满足最小支持度和最小置信度的规则,叫做“强关联规则”。然而,强关联规则里,也分有效的强关联规则和无效的强关联规则。
如果Lift(X→Y)>1,则规则“X→Y”是有效的强关联规则。
如果Lift(X→Y) <=1,则规则“X→Y”是无效的强关联规则。
关联规则的结果分类:
可行的规则(可实际操作)
平凡的规则(规则显而易见,不够有用)
令人费解的规则(可实施性的原因不明确)
关联规则挖掘过程主要包含两个阶段:
第一阶段必须先从资料集合中找出所有的高频项目组(Frequent Itemsets);
第二阶段再由这些高频项目组中产生关联规则(Association Rules)。
关联规则挖掘的相关算法
1.Apriori算法:使用候选项集找频繁项集
Apriori算法核心是基于两阶段频集思想的递推算法。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。