原题链接
https://ac.nowcoder.com/acm/contest/11254/E
题目大意
给定 n ( 1 ≤ n ≤ 1 0 18 ) n(1\leq n\leq 10^{18}) n(1≤n≤1018),求满足 x y + 1 ∣ x 2 + y 2 xy+1|x^2+y^2 xy+1∣x2+y2的正整数对 ( x , y ) ( 1 ≤ x ≤ y ≤ n ) (x,y)(1\leq x\leq y\leq n) (x,y)(1≤x≤y≤n)的数量。
题解
设
k
(
x
y
+
1
)
=
x
2
+
y
2
k(xy+1)=x^2+y^2
k(xy+1)=x2+y2。
根据韦达定理可得
(
x
,
k
x
−
y
)
(x,kx-y)
(x,kx−y)是一组解,且
k
k
k为平方数。
不难发现当 y = x 3 y=x^3 y=x3时, ( x , y ) (x,y) (x,y)满足条件且此时 k = x 2 k=x^2 k=x2。
于是我们只要枚举第一组解 ( x , x 3 ) (x,x^3) (x,x3)并根据上述关系式进一步计算更多的解即可。
参考代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll MAXN=1e18;
int T;
ll n,m=0,v[5000010];
int main()
{
v[m++]=1;
for(ll i=2;i*i*i<=MAXN;i++)
{
ll x=i,y=i*i*i;
v[m++]=y;
while(y<=(MAXN+x)/i/i)
{
x=i*i*y-x;
swap(x,y);
v[m++]=y;
}
}
sort(v,v+m);//从小到大进行排序方便二分找答案
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
printf("%lld\n",upper_bound(v,v+m,n)-v);
//二分找到的下标即是需要输出的正整数对的数量
}
}
这篇博客讲述了如何通过数学方法解决一个关于大整数n的计数问题,即找到满足xy+1整除x^2+y^2的正整数对(x, y)的数量。解题关键在于利用韦达定理和平方数性质,通过枚举初始解和递推关系来求解。代码实现中使用了二分查找优化查找过程。
276

被折叠的 条评论
为什么被折叠?



