2021牛客多校#7 J-xay loves Floyd

原题链接
				https://ac.nowcoder.com/acm/contest/11258/J

题目大意

有人将Floyd算法写错成一下形式:

for i from 1 to n
	for j from 1 to n
		for k from 1 to n
			dis[i][j] <- min(dis[i][j] , d[i][k] + dis[k][j])

给定 n ( 1 ≤ n ≤ 2000 ) n(1\le n\le 2000) n(1n2000)个点 m ( 1 ≤ m ≤ 5000 ) m(1\le m\le 5000) m(1m5000)条边的有向图,求按照错误的Floyd算法执行后,有多少 d i s [ i ] [ j ] dis[i][j] dis[i][j]和正确的算法结果一样。

题解

如果我们直接用Floyd算法进行计算的话,复杂度为 O ( n 3 ) O(n^3) O(n3),肯定是不行的。

再想想其他计算最短路的算法,还有 d i j k s t r a dijkstra d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值