大家好呀,我是爬行系,今天继续 五一的快乐加餐,动态规划练习题!
题目描述
题目描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是\le 50000≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
1行,若干个整数(个数\le 100000≤100000)
NOIP 原题数据规模不超过 2000。
输出格式
22行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
题目链接
提示:为了让大家更好地测试n方算法,本题开启spj,n方100分,nlogn200分 每点两问,按问给分
解题思路
求最多能拦截多少导弹,其实就是求最长不上升子序列;拦截所有导弹最少要配备多少套这种导弹拦截系统,就是求最长的上升子序列,要是按照最长上升/不上升的dp的模板去做的话只能得到100分而已。要得到200分,算法复杂度为o(nlogn),就要用二分+贪心去解题。
对于最长上升子序列,算法思路是从贪心思想考虑,我们要使得上升子序列尽可能的长,则我们需要让上升序列尽可能慢点,因此我们可以创建一个数组d[i],表示长度为i的最长上升序列末尾的最小元素,用len记录目前最长上升子序列的长度,起始时为1,d[1]=a[1];因而我们可以遍历a[i],只要a[i]>d[len],则直接加入到d数组中,并更新len=len+1,又因为d[i]是单调递增的,所以我们可以二分查找,找到第一个比a[i]小的数d[k],并更新d[k+1]=a[i];
AC代码
import java.io.*;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String[] str=br.readLine().split(" ");
int[] a=new int[100005];
int[] d=new int[100005];
int[] d1=new int[100005];
for(int i=0;i<str.length;i++) {
a[i+1]=Integer.parseInt(str[i]);
}
int len=1;
d[1]=d1[1]=a[1];
for(int i=2;i<=str.length;i++) {
if(a[i]<=d[len]) {
d[++len]=a[i];
}else {
int l=1,r=len;
while(l<r) {//找到第一个比a[i]大的数
int mid=(l+r)>>1;
if(d[mid]>=a[i]) {
l=mid+1;
}else {
r=mid;
}
}
d[r]=a[i];
}
}
System.out.println(len);
len=1;
for(int i=2;i<=str.length;i++) {
if(a[i]>d1[len]) {
d1[++len]=a[i];
}else {
int l=1,r=len;
while(l<r) {//找到第一个比a[i]小的数
int mid=(l+r)>>1;
if(d1[mid]<a[i]) {
l=mid+1;
}else {
r=mid;
}
}
d1[r]=a[i];
}
}
System.out.println(len);
}
}
又收获了一种新的解题模板!
博客介绍了如何使用动态规划解决最长上升和最长不上升子序列问题,以解决导弹拦截系统拦截导弹数量的最大化和最小系统配备。通过二分查找和贪心策略,实现了O(nlogn)的时间复杂度,从而获得更高的评分。文章提供了详细的解题思路和AC代码,适合算法爱好者学习和实践。
6万+

被折叠的 条评论
为什么被折叠?



