- 博客(124)
- 收藏
- 关注
原创 深度学习--负采样技术及其扩展详解
负采样(Negative Sampling)是一种常用于自然语言处理和推荐系统中的技术,主要目的是优化模型的训练效率和效果。负采样技术的典型应用场景包括词向量训练(如Word2Vec)、推荐系统中的隐语义模型训练等。
2024-08-26 08:20:38
1657
原创 深度学习--复制机制:CopyNet 模型在序列到序列模型中的应用以及代码实现
CopyNet 是一种特别设计的序列到序列(Seq2Seq)模型,旨在更好地处理那些在输出序列中需要直接复制输入序列中的部分或全部内容的任务。它在机器翻译、摘要生成、文本复述等任务中有广泛的应用,尤其是在输入和输出有显著重叠的场景。
2024-08-25 10:51:26
1207
原创 深度学习--复制机制
复制机制(Copy Mechanism) 是自然语言处理(NLP)中特别是在文本生成任务中(如机器翻译、摘要生成等)使用的一种技术。它允许模型在生成输出时不仅仅依赖于其词汇表中的单词,还可以从输入文本中“复制”单词到输出文本中。这种机制非常有用,尤其是在处理未见过的词汇或专有名词时。
2024-08-25 10:07:21
1093
原创 深度学习--自监督学习
自监督学习是一种无需大量人工标注的数据驱动方法,在生成模型中应用广泛。自监督学习通过利用数据中的固有结构或属性创建“伪标签”,使模型在没有人工标签的情况下进行学习。这种方法既提高了模型的训练效率,又降低了对标注数据的依赖。
2024-08-25 09:53:04
1392
原创 深度学习--对抗生成网络(GAN)
对抗生成网络(Generative Adversarial Network, GAN)是一种深度学习模型,由伊恩·古德费洛(Ian Goodfellow)及其同事在2014年提出。GAN通过两个神经网络的对抗过程来生成数据,这两个网络分别是生成器(Generator)和判别器(Discriminator)。
2024-08-25 09:47:13
1724
原创 Python--正则表达式
正则表达式(Regular Expressions, 简称 regex 或 RE)是一种强大的工具,用于匹配和操作字符串。Python 中的 re 模块提供了一整套操作正则表达式的功能,使得我们可以轻松地对字符串进行搜索、匹配、替换等操作。
2024-08-24 17:06:22
661
原创 多指标用于评估文本生成模型的性能
BLEU:用于衡量机器生成文本与参考文本在n-gram层面的匹配程度,主要关注精确度(precision)。ROUGE_L:基于最长公共子序列,衡量生成文本与参考文本的相似性,偏重召回率(recall)。METEOR:结合了精确匹配、词形变化、同义词匹配和词序,提供更综合的文本相似性评估。
2024-08-24 14:50:33
715
原创 RACE数据集
RACE(Reading Comprehension from Examinations)数据集是一个著名的机器阅读理解数据集,由大规模的英语阅读理解题目构成,专门用于训练和评估机器阅读理解能力。RACE 数据集的题目来源于中国的中学生英语考试,分为 RACE-M 和 RACE-H 两个子集,分别对应初中生和高中生的题目难度。
2024-08-24 14:40:29
1035
原创 MS COCO数据集目标检测评估(Detection Evaluation)
MS COCO (Microsoft Common Objects in Context) 是一个广泛应用于计算机视觉领域的数据集和评估平台,尤其是在目标检测、分割和人体关键点检测等任务中。COCO数据集和其评估方法被广泛用于学术研究和工业应用。
2024-08-24 14:34:44
1272
原创 Python--并发编程
并发编程是一种允许程序在同一时间处理多个任务的方法。Python 提供了多线程、多进程和异步编程三种主要手段来实现并发编程。每种方法都有其适用场景和优缺点。
2024-08-24 14:08:50
950
原创 Python--迭代器、生成器和装饰器
在 Python 中,迭代器和生成器是处理可迭代对象的两个核心概念,它们可以帮助我们高效地遍历数据。装饰器则是 Python 中的一种高级功能,用于修改函数或类的行为。
2024-08-24 14:03:31
894
原创 Python--文件操作
在 Python 中,文件操作是一个常见的任务,包括读取、写入和追加文件内容。open() 函数是进行文件操作的基础,结合上下文管理器 with 语句,可以确保文件在使用后正确关闭,从而避免资源泄漏。
2024-08-24 13:59:09
1014
原创 深度学习--RNN以及RNN的延伸
循环神经网络(Recurrent Neural Network, RNN)是一类能够处理序列数据的神经网络,在自然语言处理、时间序列分析等任务中得到了广泛应用。RNN能够通过其内部的循环结构,捕捉到序列中前后项之间的关系。
2024-08-21 13:24:32
1064
原创 机器学习--序列到序列模型总结
序列到序列(Seq2Seq)模型的发展历程中,随着技术的进步和研究的深入,出现了多种不同的架构。这些架构在编码器-解码器结构的基础上逐步演化,融合了多种改进策略和创新方法。
2024-08-21 09:46:33
1265
原创 Python--面向对象编程:封装、继承和多态
在面向对象编程(OOP)中,封装、继承和多态是三个核心的概念,掌握它们有助于更好地设计和开发复杂的软件系统。
2024-08-20 23:46:47
788
原创 深度学习--时间序列预测方法总结
时间序列预测是分析和预测一系列时间顺序数据的方法。不同的时间序列预测方法在应用中根据数据特征和目标有不同的适用性。
2024-08-20 12:56:07
2020
原创 深度学习--包的弃用问题
包的弃用问题是指在新版库中一些函数或模块不再推荐使用,且可能在未来的版本中被移除的情况。为了解决包的弃用问题,开发者需要采取多种策略。
2024-08-20 08:17:38
1032
原创 深度学习--常用的调整张量形状的方法总结
在深度学习中,调整张量的形状是一个常见且重要的操作。它使我们能够调整数据的形式以适应模型的输入要求或进行其他处理。
2024-08-19 12:51:01
828
原创 深度学习--tensorflow/keras出现各种维度不匹配问题解决
在深度学习中,维度不匹配问题是一个常见的错误,尤其是在使用 TensorFlow 或 Keras 进行模型开发时。
2024-08-19 12:41:28
1001
原创 Python--数据类型转换
在Python中,数据类型的转换是一个常见的操作,涉及将一种数据类型转换为另一种数据类型。Python提供了多种内置函数用于执行这种转换,如 int()、str()、float()、list()、tuple()、set()、dict() 等。
2024-08-19 11:21:31
672
原创 Python--常见的越界问题总结
在Python编程中,"越界"问题是指程序试图访问超出指定范围或边界的数据。例如,当试图访问一个列表、数组、或其他数据结构的一个索引,而这个索引超出了该数据结构的有效范围时,就会出现越界错误。常见的越界问题包括列表或数组越界、字符串索引越界、切片越界、数据流超界等。
2024-08-19 09:55:57
1652
原创 Python--样本长度越界问题
这个错误提示是由于在使用 pack_padded_sequence 时,lengths_list 中包含了一个或多个长度为 0 的元素导致的。pack_padded_sequence 要求所有的样本长度必须大于 0,因此当其中有任何长度为 0 的样本时,就会触发这个错误。
2024-08-19 09:42:38
499
原创 Python--类型转换相关知识点总结
Python中的类型转换是指将一个数据类型转换为另一种数据类型。类型转换在编程中非常常见,可以帮助程序更灵活地处理不同类型的数据。
2024-08-19 08:44:19
682
原创 深度学习--数据类型报错问题
出现 ValueError: num_outputs should be int or long, got 400 错误的原因是某个函数或方法需要 int 类型的参数,但接收到的却是其他类型的数据(如浮点数、字符串等)。
2024-08-18 22:17:12
405
原创 深度学习--参数报错问题
这个报错通常是因为在使用 torch.nn.utils.rnn.pack_padded_sequence 时,lengths 参数中的某个值小于等于 0。pack_padded_sequence 要求输入的序列长度必须大于 0,但如果数据中存在长度为 0 的序列,就会触发这个错误。
2024-08-18 22:06:46
535
原创 机器学习--监督学习、非监督学习和半监督学习
在机器学习中,数据的标注方式和学习任务的性质决定了使用的学习方法。监督学习、非监督学习和半监督学习是三种主要的学习范式。
2024-08-17 13:10:46
1129
原创 TensorFlow库详解:Python中的深度学习框架
TensorFlow 是一个开源的深度学习框架,由 Google Brain 团队开发,并于 2015 年正式发布。TensorFlow 被广泛应用于各种深度学习任务,如图像识别、自然语言处理、语音识别等。它能够处理大规模的多维数据,并支持在多种硬件平台上运行,如 CPU、GPU 和 TPU(Tensor Processing Unit)。TensorFlow 在 Python 中的使用非常广泛,因为 Python 是机器学习和数据科学领域的主流编程语言。
2024-08-17 12:52:07
2498
原创 Python--多种处理报错异常的方法
在某些情况下,可能需要定义自己的异常类型。可以通过继承内置的Exception类来自定义异常类型,然后在程序中抛出和处理这些自定义异常。
2024-08-16 22:19:17
616
原创 Python进阶知识点--总结
main.py异常处理用于捕获和处理程序运行时发生的错误,防止程序崩溃。passtry:print(e)通过掌握以上Python进阶知识,能够编写更高效、结构化、更具扩展性和健壮性的代码。这些概念和工具是深入理解Python和成为高级Python开发者的重要基础。
2024-08-16 21:29:55
1020
原创 Python基础知识点--总结
1. 注释注释用于提高代码的可读性,在代码中添加说明文字,使代码更容易理解。'''"""# 这是一个单行注释"""这是一个多行注释可以跨越多行"""
2024-08-16 21:20:14
2400
4
原创 残差网络--NLP上的应用
在自然语言处理(NLP)领域,残差网络(ResNet)同样有着广泛的应用。虽然最初的残差网络设计是为了处理图像任务,但其核心思想也被成功地迁移到了自然语言处理任务中,以解决深层神经网络中的退化问题,提高模型性能。
2024-08-15 14:26:06
1242
原创 残差网络--图像上的应用
残差网络(ResNet, Residual Network)是由何凯明等人在2015年提出的一种深度卷积神经网络结构,主要用于解决深度神经网络训练中存在的退化问题。深度网络中,随着网络层数的增加,模型的准确率反而会下降,这就是退化问题。残差网络通过引入“残差块”来缓解这一问题,使得更深层次的网络也能够有效训练。
2024-08-15 14:21:20
658
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅