Ambition_LAO
码龄6年
关注
提问 私信
  • 博客:150,283
    150,283
    总访问量
  • 124
    原创
  • 11,009
    排名
  • 1,661
    粉丝

个人简介:在读研究生,计算机专业

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:甘肃省
  • 加入CSDN时间: 2019-05-15
博客简介:

GDHBFTGGG的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    4
    当前总分
    754
    当月
    67
个人成就
  • 获得2,178次点赞
  • 内容获得5次评论
  • 获得1,722次收藏
创作历程
  • 124篇
    2024年
成就勋章
兴趣领域 设置
  • Python
    pythonnumpyconda
  • Java
    java
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

LLaMA-Factory 基于 LoRA 的 SFT 指令微调及相关功能梳理

自动评估模型生成效果,计算文本生成指标(如 BLEU 和 ROUGE)。微调完成后,可以动态加载 LoRA 微调结果,验证模型效果。文件,将数据集注册到系统中。
原创
发布博客 2024.12.17 ·
805 阅读 ·
24 点赞 ·
0 评论 ·
8 收藏

LLaMA-Factory QuickStart 流程详解

LLaMA-Factory 是一个整合主流高效训练与微调技术的框架,支持主流开源大模型(如 LLaMA、Qwen、Baichuan 等),提供便捷的接口和工作台,降低大模型微调门槛。确保硬件环境满足需求(如 RTX 3090/4090)。LLaMA-Factory 支持。
原创
发布博客 2024.12.17 ·
1074 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

Neo4j 构建文本类型的知识图谱

使用 Neo4j 构建文本类型的知识图谱的核心步骤包括文本数据的预处理、实体和关系的提取、将数据导入图数据库,以及利用 Cypher 进行查询和分析。通过结合 NLP 技术,能够从文本中自动提取出有价值的信息,并构建一个高效的图结构,以支持复杂的查询和知识发现。
原创
发布博客 2024.10.16 ·
1172 阅读 ·
31 点赞 ·
1 评论 ·
14 收藏

Python--WinError 2 的常见解决方案

报错信息:FileNotFoundError: [WinError 2] 系统找不到指定的文件。这个错误提示说明在调用时,系统找不到指定的文件或可执行程序。在代码中,这个问题主要是因为找不到 Java JAR 文件,也就是用于计算 METEOR 分数的评估工具。
原创
发布博客 2024.10.14 ·
2429 阅读 ·
31 点赞 ·
0 评论 ·
13 收藏

T5--详解

T5的架构基于,并且与BERT、GPT不同,它是一个Encoder-Decoder(编码器-解码器)结构。它主要用于生成任务,如摘要、翻译、问答、生成式文本分类等。T5 是一种功能强大且灵活的Transformer模型,它能够统一处理各种NLP任务,并通过预训练在大规模数据集上取得了卓越的性能。其“文本到文本”的框架让T5在文本生成、翻译、分类、问答等多种任务上表现优异。通过Hugging Face的库,可以方便地加载和使用T5模型来处理各种NLP任务。
原创
发布博客 2024.10.12 ·
1468 阅读 ·
31 点赞 ·
0 评论 ·
19 收藏

GRU--详解

​# 超参数output_size = input_size # 输出大小和输入大小相同,都是字符集大小​​# 损失函数和优化器GRU 是一种强大的循环神经网络架构,在处理序列数据(如文本生成、语言模型等)时非常有效。其结构相比 LSTM 简化了门控机制,但仍能有效捕捉长时间依赖。通过PyTorch等框架,可以快速构建并训练GRU模型,并应用于诸如文本生成等任务。
原创
发布博客 2024.10.10 ·
2222 阅读 ·
26 点赞 ·
0 评论 ·
12 收藏

BART--详解

​# 加载BART分词器和预训练的文本摘要模型​# 输入待生成摘要的长文本text = """"""​# 对输入文本进行编码​# 使用BART进行文本摘要生成​# 解码生成的摘要文本BART模型概述:BART是结合了BERT和GPT优势的序列到序列生成模型,广泛用于文本生成任务,如摘要、翻译、对话生成等。基本结构:由双向编码器(类似BERT)和自回归解码器(类似GPT)组成。通过多种扰动输入的方法进行去噪自编码器训练。经典代码:使用Hugging Face的。
原创
发布博客 2024.10.10 ·
1153 阅读 ·
32 点赞 ·
0 评论 ·
23 收藏

BERT--详解

BERT模型概述:BERT是基于Transformer的双向预训练模型,擅长捕捉上下文语义信息,广泛应用于NLP任务。基本结构:主要由输入层、多层Transformer Encoder组成,通过MLM和NSP进行预训练。经典代码:使用Hugging Face的库,简单实现BERT的文本处理。生成任务示例:尽管BERT主要用于理解任务,但可以通过MLM进行词填充等简单生成任务。
原创
发布博客 2024.10.08 ·
1647 阅读 ·
31 点赞 ·
0 评论 ·
17 收藏

Transformer--详解

Transformer凭借其并行化的结构、自注意力机制以及位置编码技术,能够非常有效地处理长距离依赖问题。它被广泛应用于各类自然语言处理任务,尤其是在大规模预训练语言模型中(如BERT、GPT等)。
原创
发布博客 2024.10.08 ·
1161 阅读 ·
23 点赞 ·
0 评论 ·
10 收藏

Python--解决占用重复内存问题

通过 TrainingArguments 设置 save_safetensors=False 来禁用 safetensors,这样可以避免共享张量保存时引发的错误。如果希望手动控制模型保存,也可以调用 model.save_pretrained() 来保存模型。
原创
发布博客 2024.10.07 ·
1068 阅读 ·
18 点赞 ·
0 评论 ·
8 收藏

LSTM--详解

LSTM作为递归神经网络的一种,专门用于处理长依赖序列问题,因其在许多任务中(如自然语言处理、时间序列预测等)表现优异,成为了深度学习领域的重要模型之一。
原创
发布博客 2024.10.07 ·
1211 阅读 ·
10 点赞 ·
0 评论 ·
17 收藏

RNN--详解

循环神经网络 (Recurrent Neural Network, RNN) 是一种专门用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN 具有循环结构,能够处理时间序列和其他顺序依赖的数据。其关键在于可以利用前一个时刻的信息,通过隐状态 (Hidden State)在时间步长上进行传递,从而具有记忆性。下面的代码定义了一个基本的 RNN 模型。使用一个嵌入层和一个简单的 RNN 层来对文本进行分类。输出的隐藏状态将传递到全连接层来预测情感标签。# 嵌入层# RNN层# 全连接层。
原创
发布博客 2024.10.07 ·
965 阅读 ·
29 点赞 ·
0 评论 ·
9 收藏

Python 进阶部分详细整理

可以通过继承Exception类自定义异常,适用于需要在程序中捕获特定错误的情况。
原创
发布博客 2024.10.07 ·
1562 阅读 ·
25 点赞 ·
0 评论 ·
22 收藏

Python 基础知识点详细整理

简介:解释 Python 的特点,解释其跨平台性、解释性和面向对象特性。安装与配置:如何安装 Python,搭建 Python 环境,使用pip安装库。集成开发环境 (IDE):如 PyCharm、VSCode、Jupyter 等的使用。
原创
发布博客 2024.10.06 ·
1000 阅读 ·
15 点赞 ·
0 评论 ·
9 收藏

解决Transformer训练中GPT-2模型报错:样本填充问题与tokenizer冲突处理

这个问题是因为GPT-2模型在设计时没有为填充(padding)定义一个专用的填充标记(pad token)。由于GPT-2是基于自回归的结构,它在训练时不需要像BERT那样进行填充。要解决这个问题,可以手动为GPT-2设置一个填充标记(pad token)并相应调整填充行为。
原创
发布博客 2024.10.06 ·
686 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

深度学习--自动化打标签

数据准备:人工标记一部分数据,并分成训练集和验证集。模型微调:通过羊驼模型微调,让模型学习数据的标签分布。预测与对比:模型在验证集上进行预测,并与人工标签对比,使用准确率和 F1-score 等指标评估模型性能。自动打标签:模型通过自动化方式对未标注数据进行打标签。通过这种方法,能够有效利用大模型进行大规模数据的标签生成,同时减少人工标注的成本和工作量。
原创
发布博客 2024.10.03 ·
1689 阅读 ·
16 点赞 ·
0 评论 ·
16 收藏

在Conda环境中,查看某个包是否安装的方式

这些方法可以快速确定某个包是否已经在 Conda 环境中安装。打开终端或命令提示符(确保激活了对应的 Conda 环境)。conda list | grep 包名。conda activate 你的环境名。对于 Windows 用户,可以使用。如果包已安装,会显示已安装的版本。conda search 包名。conda list 包名。>>> import 包名。如果包不存在,将会收到。
原创
发布博客 2024.10.03 ·
1005 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

LLM-in-the-loop:数据集构建

通过上述过程,能够在LLM-in-the-loop数据构建过程中,逐步利用人工标注数据引导模型,通过不断的标注与微调循环,使模型逼近人工标注效果。
原创
发布博客 2024.10.03 ·
785 阅读 ·
9 点赞 ·
0 评论 ·
13 收藏

Python--解决从Hugging Face的服务器下载某个预训练模型或其相关的文件问题

一.错误信息:ValueError: Connection error, and we cannot find the requested files in the cached path. Please try again or make sure your Internet connection is on.这个错误信息表明正在尝试从 Hugging Face 的服务器下载某个预训练模型或其相关的文件,但由于网络连接问题无法成功下载,也无法从缓存中找到该文件。
原创
发布博客 2024.10.03 ·
1460 阅读 ·
12 点赞 ·
0 评论 ·
17 收藏

Python--导入模块报错处理

根据需要替换 openai_object 的用法,例如 openai.OpenAIObject 等。pip install openai==<目标版本号>错误,并使代码正常运行。如果仍然无法解决,建议参考。文件的依赖信息,进一步排查问题源头。通过这些步骤,可以有效地解决。库的官方文档,或查看。
原创
发布博客 2024.10.03 ·
714 阅读 ·
22 点赞 ·
0 评论 ·
9 收藏
加载更多