文本检测和文本识别可以分成两个部分; 目前的深度学习方案也有很多端到端的系统。
本质也是计算机视觉中的一种物体检测和识别分支;
-- 传统方法用手工特征提取检测是否文本区域;
之后通过传统的机器学习方法,例如 支持向量机 SVM等方法 将特征分类,识别字符。
-- 深度学习方法,用卷积神经网络提取特征,之后检测; 或分类。
截至2021年11月,目前的一篇综述论文详述了各个类别的方法。
参考论文:
Long S, He X, Yao C. Scene text detection and recognition: The deep learning era[J]. International Journal of Computer Vision, 2021, 129(1): 161-184.
下载链接:SceneTextDetectionandRecognition_TheDeepLearningEra.pdf-互联网文档类资源-CSDN下载

本文探讨了文本检测和识别的两种主要方法:传统方法和深度学习方法。传统方法依赖手工特征和SVM分类,而深度学习则利用CNN进行特征提取和检测。随着2021年一篇综述论文的发表,深度学习在这一领域的进步得到了详细阐述,为场景文本检测和识别提供了新的视角。

被折叠的 条评论
为什么被折叠?



