数二-线代

一、行列式

一.性质

二.易混

1.代数余子式和余子式

余子式,即去掉i行j列后余下的行列式拼成的子式。

代数余子式,即在余子式前面加上符号。

行列式,等于某一行(列)代数余子式之和。

三.一些重要行列式

1.主对角线。副对角线=

2.拉普拉斯(分块)

3.范德蒙行列式(成比列变化)

二、矩阵

初等矩阵的逆矩阵

1)对于倍加类型的初等矩阵,其逆矩阵是原初等矩阵对应行变相反数的矩阵,即多出来的加个负号;

2)互换类型的初等矩阵,其逆矩阵是自身;

3)对于倍乘类型的初等矩阵,逆矩阵是原矩阵对应行乘以倒数。

正交矩阵

AA^{T}=A^{T}A=E,即A^{-1}=A^{T}

三、矩阵的秩

关于秩的结论

1)A_{m*n}*B_{n*l}=0,则r(A)+r(B)\leqslant n

2)r(A_{m*n})=n(列满秩),r(AB)=r(B);r(A_{m*n})=m(行满秩),r(BA)=r(B)

3)矩阵A秩为1

4)r(A^{T}A) =r(A)

四、线性方程组

一.解的结构

1)基础解系

2)通解:基础解系的线性组合

非齐:特解+齐次通

二.通解的技巧

1)根据自由未知量个数写出通解样式:非齐特+齐通

2)将自由未知量填为1,0;其它值由1所在列反号顺抄

3)非齐特:自由未知量为0,其它顺抄常数项

知识点:

1.任意A*B=0,则B就是矩阵A的解;

2.齐次线性无关解数量 = n-r ,非齐次线性无关解数量 =  n-r+1;

五、向量组和线性方程组的一些结论

一.极大线性无关组

二.等价问题

1.同解

2.矩阵等价

矩阵等价、相似、合同的定义及性质_两个矩阵相似有哪些性质-CSDN博客

矩阵A经过有限次初等变换得到矩阵B,即,PAM=B,则A与B等价。(初等变换可逆)

r(A)=r(B)

3.向量组等价

两个向量组可以相互线性表示。

向量组中向量的个数不要求相等,但极大线性无关组相等。

4.矩阵相似

5.矩阵合同

相似:特征值完全相同

合同:特征值仅符号相同

正交变换:既合同又相似

六、特征值和特征向量、相似矩阵

一.特征值的求解

1.|ʎE-A|=0,求出ʎ。

2.带入ʎ,求出(ʎE-A)α=0对应的特征向量。特征向量即齐次方程的基础解系。

二.特征值的重要性质 

1.矩阵A的主对角线之和(迹)等于特征值之和。tr(A)=特征值之和。

2.矩阵A的行列式等于特征值之积。|A|=特征值之积。

三.相似矩阵 

1.定义

2.性质

3.重要结论

4.相似判定

四.矩阵的相似对角化

1.性质

2.可相似对角化的条件

1)充要条件:矩阵A有n个线性无关的特征向量;

2)充要条件:矩阵A每个k重的特征值,对应有线性无关的k重特征向量;

3)充分条件:矩阵A有n个不同的特征值;

4)充分条件:矩阵A为实对称矩阵。

3.求可逆矩阵P,使矩阵A相似对角化,即P^{-1}AP=⋀

求P,即求矩阵A的特征值及特征向量

1)求矩阵A的特征值,求出其特征向量

2)由特征向量组合成为P

4.由特征值、特征向量反求矩阵A

1)有特征值即有⋀,有特征向量即有P。而P^{-1}AP=⋀

2)矩阵A=P⋀P^{-1}

五.实对称矩阵的相似对角化

1.性质

1)实对称矩阵A的属于不同特征值的特征向量相互正交

2)任意的实对阵矩阵A均可相似对角化

2.实对称矩阵相似对角化步骤

1)求特征值、特征向量

2)将特征向量正交化(可用施密特正交化法或直接观察,见1000基础6t)、单位化

3)将特征向量拼成Q

3.谱分解

A=\lambda_ {1}\xi _{1}\xi _{1}^{T}+\lambda_ {2}\xi _{2}\xi _{2}^{T}+\lambda_ {3}\xi _{3}\xi _{3}^{T}+...+\lambda_ {n}\xi _{n}\xi _{n}^{T}

七、二次型

一.合同变换、标准型、规范型(概念见1000线代基础二次型讲解视频)

1.合同
1)定义

2)性质

1.合同,则秩相同

2.合同矩阵,必是实对称矩阵(考研中)

3.r(A)=r(B)

4.合同,则正负惯性指数相同,则规范型相同

3)合同判别

两个二次型(即实对称矩阵)合同的充要条件

1.具有相同的正、负惯性指数

2.或有相同的秩及正(或负)惯性指数

3.或有相同的正、负特征值个数

2.标准型、规范型
1)定义

标准型:除了对角线元素,其余全为0;

规范型:除了对角线元素,其余全为0,且对角线取值{-1,0,+1}。

2)定理(配方法和正交变换)

 1.任意二次型均可通过配方法化成标准型及规范型

2.任意二次型均可通过正交变换化成标准型及规范型

 

 3.标准型和规范型的求解
1)配方法

1.一定可化成规范型

配方法求解可逆矩阵P的求解框架:

2)正交变换法及一些相关问题的求解

正交变换法求解标准型的步骤:

1.将矩阵化为二次型,求矩阵的特征值。所得特征值即为正交变换后标准型的系数。若系数全为{±1,0},则为规范型。

2.求特征值对应的特征向量,并将特征向量正交化、单位化,所得向量拼成线性变换Q矩阵。

 ps:

1.正交变换后标准型的系数必是矩阵A的特征值。且正交变换不一定可化成规范型。

正交变换法求解正交矩阵Q求解框架:

3)特征值法求规范型 

1.可逆的线性变换不改变正负惯性指数。求得特征值,即得到正负惯性指数的个数,即得到规范型的形式。 

4)配方法和正交法的对比

二.惯性定理

1)求惯性指数的相关问题

1.使用配方法,看其平方项的正系数个数

2.求二次型矩阵A的特征值,看特征值的个数

三.正定二次型及其判别

正定,即函数f恒大于等于0

1.性质

2.必要条件

1)主对角线元素>0;

2)|A|>0 

四.二次型最值问题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值