关于大模型的一些概念和知识

一、模型微调和模型量化

模型量化和微调是两种不同的模型优化技术,它们通常用于不同的阶段和目的,但也可以结合使用以优化模型的性能和效率。

  1. 模型微调:

    • 微调是一种迁移学习技术,用于调整预训练模型以适应特定任务或数据集。在微调过程中,模型通常在一个与预训练任务相似但不完全相同的任务上进行训练,以细化模型的权重和参数,使其更好地适应新任务。
    • 微调可以涉及所有参数(全参数微调),也可以只涉及模型的一部分(如LoRA),并且通常使用原始的高精度(例如32位浮点数)进行。
  2. 模型量化:

    • 量化是一种降低模型精度的后处理步骤,将模型的权重和激活从高精度格式(如32位浮点数)转换为低精度格式(如8位或4位整数)。这通常在模型已经过训练并准备部署时执行。
    • 量化的目的是减少模型的大小和推理延迟,使其更适合在资源受限的环境中运行,比如移动设备或嵌入式系统。

它们之间的关系:

  • 微调和量化可以串行结合使用。通常先对预训练模型进行微调,调整模型以适应特定任务。一旦微调完成,模型表现达到了可接受的水平,就可以对模型进行量化,以减少其大小和提高推理速度。
  • 在某些情况下,量化不仅仅是一个后处理步骤,还可以在训练过程中进行,这称为量化感知训练(Quantization-Aware Training, QAT)。在QAT中,量化操作被包括在训练过程中,这样模型在学习参数时就会考虑到量化带来的影响,从而减少量化后模型精度的损失。
  • 在实际应用中,如果量化后的模型性能下降过多,可能需要重新对量化后的模型进行微调,以恢复或提高其在量化精度下的性能。这种微调通常在模型已经量化的状态下进行,要考虑到量化对梯度和权重更新的影响。

二、全参数微调 、LoRA、Q-LoRA 这三者有什么区别

全参数微调 (Full Parameter Fine-tuning)、LoRA (Low-Rank Adaptation) 和 Q-LoRA (Quantized Low-Rank Adaptation) 是三种不同的神经网络模型调整方法,

尤其是在自然语言处理(NLP)领域的预训练语言模型(如BERT、GPT等)上的应用。它们在调整预训练模型以适应特定任务时有不同的方法和目标。

  1. 全参数微调 (Full Parameter Fine-tuning):

    • 全参数微调是最传统的方法,涉及调整预训练模型的所有参数以适应新任务。
    • 在这种方法中,模型的每个权重都会在新数据集上更新。
    • 这种方法往往需要大量的数据来避免过拟合,并且计算成本较高,因为需要更新大量的参数。
  2. LoRA (Low-Rank Adaptation):

    • LoRA 是一种更有效的微调方法,它通过在模型的权重矩阵中添加低秩矩阵来更新模型的参数。
    • 这种方法不直接改变预训练模型的权重,而是插入额外的可训练参数,这些参数与原始权重相乘以实现特定的调整。
    • LoRA 的优点是它只需要更新一小部分参数,从而减少了计算成本和内存需求,同时仍然允许模型在新任务上表现良好。
  3. Q-LoRA (Quantized Low-Rank Adaptation):

    • Q-LoRA 是 LoRA 的一个变种,它进一步通过量化技术来减小模型的大小和加速推理。
    • 量化涉及将模型的权重和激活从浮点数(如32位浮点数)转换为低精度的表示(如8位整数)。
    • 这种方法可以显著减少模型的内存占用,并可能加快模型的推理速度,但可能会牺牲一些模型精度。

全参数微调是一种通用但成本较高的方法,LoRA 是一种更高效的参数调整方法,而 Q-LoRA 进一步通过量化减少资源需求。在选择哪种方法时,通常需要权衡模型性能、微调速度和资源消耗之间的关系。

三、模型量化

量化是一种将模型的权重和激活(即神经网络中的中间输出)从一种精度(通常是32位浮点数)转换为另一种较低精度(如整数)的技术。这通常用于减少模型的大小和加速推理(即模型的执行速度)。当你听到“Int4”和“Int8”量化时,这是指模型中的数据被量化到4位整数和8位整数。

  1. Int8量化:

    • 在Int8量化中,模型的权重和激活值被量化为8位整数,这意味着每个数字可以在-128到127的范围内(对于有符号整数)或0到255的范围内(对于无符号整数)。
    • 这减少了模型大小到原始浮点模型的1/4,因为原始模型通常使用32位浮点数。
  2. Int4量化:

    • Int4量化进一步减少精度,将权重和激活量化到4位整数,这意味着每个数字可以在-8到7的范围内(对于有符号整数)或0到15的范围内(对于无符号整数)。
    • 这将模型大小减少到原始浮点模型的1/8。

进行量化的原因包括:

  • 减少模型大小:量化可以显著减少模型的存储需求,这对于需要在移动设备或边缘设备上部署模型的应用场景尤其重要。
  • 加速推理:较低精度的计算可以更快地执行,特别是在专门支持低精度运算的硬件上。
  • 降低能耗:较小的模型和更快的推理速度可以降低设备的能耗,这对于电池驱动的设备来说非常重要。

然而,量化可能会导致模型精度的损失,因为用较低的位数表示数据会造成信息损失。因此,通常需要在量化过程中采用一些技术(如量化校准、量化感知训练)来尽量减少精度损失。

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值