题目
给你一棵树,树上有 n 个节点,按从 0 到 n-1 编号。树以父节点数组的形式给出,其中 parent[i] 是节点 i 的父节点。树的根节点是编号为 0 的节点。
请你设计并实现 getKthAncestor(int node, int k) 函数,函数返回节点 node 的第 k 个祖先节点。如果不存在这样的祖先节点,返回 -1 。
树节点的第 k 个祖先节点是从该节点到根节点路径上的第 k 个节点。
提示:
- 1 <= k <= n <= 5*10^4
- parent[0] == -1 表示编号为 0 的节点是根节点。
- 对于所有的 0 < i < n ,0 <= parent[i] < n 总成立
- 0 <= node < n
- 至多查询 5*10^4 次
思路
记录每个节点的第1个祖先,第10个祖先,第100个祖先,第1000个祖先和第10000个祖先,由于数据规模是10^4,因此维护到这10000就好了,用这个缓存表去查找,查找的时间复杂度是O(logN)。构造缓存的时间复杂度是O(N)
代码
class TreeAncestor {
private int[][] anc;
public TreeAncestor(int n, int[] parent) {
anc = new int[n][5];
for(int i = 0; i < n; i++) {
Arrays.fill(anc[i], -1);
anc[i][0] = parent[i];
}
for(int i = 1; i < 5; i++) {
for(int j = 0; j < n; j++) {
int cur = anc[j][i-1];
for(int k = 0; k < 9; k++) if(cur != -1) {
cur = anc[cur][i-1];
}
anc[j][i] = cur;
}
}
}
public int getKthAncestor(int node, int k) {
for(int i = 4; i >= 0; i--) {
int base = 1;
for(int j = 0; j < i; j++) {
base *= 10;
}
while(k >= base) {
node = anc[node][i];
k -= base;
if(node == -1) {
return -1;
}
}
}
return node;
}
}

本文介绍了一种高效解决LeetCode1483题目——树节点的第K个祖先的方法。通过预处理每个节点的祖先信息,利用缓存表进行快速查找,实现了O(logN)的查询时间和O(N)的预处理时间复杂度。

被折叠的 条评论
为什么被折叠?



