一、能力迁移图谱
程序员基础能力 | AI领域应用场景 | 需强化能力 |
---|---|---|
数据结构与算法 | 模型优化与计算复杂度分析 | 动态规划、图神经网络 |
分布式系统经验 | 大规模模型训练框架设计 | 参数服务器架构 |
后端开发技能 | 模型部署与API服务化 | TensorRT优化 |
代码调试能力 | 超参数调优与梯度消失调试 | 自动微分机制理解 |
二、技能升级路径
Step1:数学基础重构(2-3个月)
- 重点攻克:概率统计、线性代数、微积分
- 实践方式:用Python复现SVM/K-Means算法
- 推荐教材:《Pattern Recognition and Machine Learning》(Christopher Bishop)
Step2:框架实战突破(3-6个月)
- 框架选择:PyTorch(学术研究向) + TensorFlow(工业部署向)
- 项目实践:
- 计算机视觉:实现YOLOv8目标检测
- 自然语言处理:训练LLaMA-based聊天机器人
- 强化学习:用Ray框架实现DQN算法