关于sklearn.svm.SVC与.NuSVC的区别以及参数介绍

0. 区别SVC与NuSVC是类似的方法,但是接受稍微不同的参数集合并具有不同的数学公式 ,并且NuSVC可以使用参数来控制支持向量的个数 , 以下代码默认的是多分类1. SVC # coding:utf-8from sklearn import svm from numpy import *X ...

2017-08-24 22:05:06

阅读数:1488

评论数:0

关于数据降维函数sklearn-PCA的使用

1. PCA介绍PCA是主成分分析,用来降维,用少量的变量去解释大部分变量,使得变量维度减少,从而减少计算量。2. 调用方法 以及 参数的简单介绍 # 先看看PCA构造函数中的默认参数 ''' def __init__(self, n_components=None, copy=True, whi...

2017-08-23 22:03:33

阅读数:403

评论数:0

利用Apriori算法进行关联分析

1. Apriori算法Apriori算法是一种挖掘关联规则的频繁项集算法,这些关系有两种形式 : 频繁项集和关联规则。 举个例子就知道了:著名的”尿布与啤酒”。 这就是通过关联分析来获取到的结果。2. 名词解释前后文中存在的名词都放在这里了 1. 频繁项集 : 在事件集合中出现频繁的项目...

2017-08-19 15:45:29

阅读数:451

评论数:0

AdaBoost元算法数据集

# 训练集 ''' 2.000000 1.000000 38.500000 66.000000 28.000000 3.000000 3.000000 0.000000 2.000000 5.000000 4.000000 4.00000...

2017-08-17 16:45:06

阅读数:248

评论数:0

利用AdaBoost元算法提高分类性能

1. 元算法介绍 做重要决定时,大家可能会考虑多个权威的意见而不是一个人的意见,机器学习中也是如此,这就是元算法的背后思想。元算法是对其他算法组合的一种方式。 优点:泛化错误低,易编码,可以用在大部分分类器上,无参数调整问题 缺点:对离群点敏感 2. AdaBoost思想 以及 涉及公式2.1 简...

2017-08-17 16:43:25

阅读数:491

评论数:0

神经网络NN简单理解以及算法

1.什么是神经网络1.1 背景 : 以人脑中的神经网络为启发,历史上出现过很多不同版本 最著名的算法是1980年的 backpropagation 1.2 多层向前神经网络(Multilayer Feed-Forward Neural Network) Backpropagation被使用在多层...

2017-08-15 16:07:42

阅读数:1124

评论数:4

简单Trie树

#include #include #include using namespace std; const int maxn=500010; int num; int indegree[maxn]; int root[maxn]; char sx[12],sy[12]; typedef...

2017-08-12 15:05:34

阅读数:189

评论数:0

Power Strings poj2406 (kmp 进阶 next数组使用)

Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 46647   Accepted: 19516 Description Given two strings a and b w...

2017-08-12 15:04:58

阅读数:218

评论数:0

支持向量机(SVM)理解以及在sklearn库中的简单应用

1. 什么是支持向量机 英文Support Vector Machines,简写SVM . 主要是基于支持向量来命名的,什么是支持向量后面会讲到…….最简单的SVM是用来二分类的,在深度学习崛起之前被誉为最好的现成分类器,”现成”指的是数据处理好,SVM可以直接拿来使用 … 2. 名词解释2.1...

2017-08-12 12:12:43

阅读数:1785

评论数:4

支持向量机-数据集

# 训练集 ''' 1.000000 0.067732 3.176513 1.000000 0.427810 3.816464 1.000000 0.995731 4.550095 1.000000 0.738336 4.256571 1.000000 0.981083 4.560815 1.00...

2017-08-12 09:08:14

阅读数:434

评论数:0

树回归问题

1. 树回归基于之前的线性回归,树回归归根结底也是回归,但不同的是,树回归可以更好的处理多特征的非线性回归问题,其基本思想就是切分数据集,切分至易拟合的数据集后进行线性回归建模。(复杂数据的局部建模)1.1回归树 节点为数值型/标称型 模型树 节点为线性模型2.优缺点优点: 可以对复杂的非线...

2017-08-10 16:03:01

阅读数:342

评论数:0

回归算法之岭回归

1. 岭回归 首先,说一下岭回归名字的由来,w^=(XTX+λI)−1⋅XTy\hat{w} = (X^TX + \lambda I)^{-1}·X^Ty,其中,I 是单位矩阵(对角线全是1,像”山岭“),λ\lambda 是岭系数(顾名思义…改变其数值可以改变单位矩阵对角线的值) 其次,岭回...

2017-08-06 20:04:15

阅读数:722

评论数:0

线性回归以及局部加权回归

0回归的含义 1线性回归 1-1 数学公式 1-2 误差以及公式最小二乘法 1-3 伪代码 1-4 代码 见下文2-4 1-5 图像以及结果 1-6 优缺点与改进 2 局部加权回归 2-1 数学公式 图像 以及 思想 2-2 伪代码 2-3 代码 包含本文所有代码 2-4 图像...

2017-08-02 18:20:56

阅读数:1459

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭