2006世界杯德国VS哥斯达黎加

本文点评了德国队在世界杯的首场比赛表现,特别提到了拉姆的表现,并对球队的整体战术布局进行了分析,包括对球员配置的看法以及对后续比赛可能面临的挑战进行了展望。

哈哈,这届世界杯德国队帅哥不少嘛。

拉姆、弗里德利希、克洛斯、波多尔斯基、默特萨克、梅策尔德~还有奥利弗~

 

拉姆表现不错,打进本届世界杯第一球。不过这小子的弹跳和头球没看出来,站位、助攻、停球倒是不错~

也不枉FM2005里边后卫我最欣赏他和一直以来对他的期许 ~

也许博罗姆斯基或巴拉克的位置再靠后点比较好,毕竟2个边后卫前插助攻后留下的空档太大,两个边前卫又是助攻型边前卫~仅靠弗林斯保护大禁区太吃力了~万大叔的那粒球就是后卫保护不力导致,前腰位置靠后些也许会避免丢球。两个中卫速度不快,一旦造越位失败或者被突破而导致丢球~恐怕奥利弗在场下要窃笑了~2002年世界杯,德国就是没能顶住大罗的突破,这次多了个小罗,不知道一旦碰上巴西会丢多少球~

少了个巴拉克真是遗憾,前场任意球威胁小了很多。把小波拉去发左角球令人费解,为何不用拉姆呢?小波在禁区里多少也有不小威慑力~

米洛斯拉夫的脚活比上届世界杯有进步,总算在世界杯用脚进个球了,哈哈~

下半场刚开始,这场球,德国应该2球以上净胜。

(Kriging_NSGA2)克里金模型结合多目标遗传算法求最优因变量及对应的最佳自变量组合研究(Matlab代码实现)内容概要:本文介绍了克里金模型(Kriging)与多目标遗传算法NSGA-II相结合的方法,用于求解最优因变量及其对应的最佳自变量组合,并提供了完整的Matlab代码实现。该方法首先利用克里金模型构建高精度的代理模型,逼近复杂的非线性系统响应,减少计算成本;随后结合NSGA-II算法进行多目标优化,搜索帕累托前沿解集,从而获得多个最优折衷方案。文中详细阐述了代理模型构建、算法集成流程及参数设置,适用于工程设计、参数反演等复杂优化问题。此外,文档还展示了该方法在SCI一区论文中的复现应用,体现了其科学性与实用性。; 适合人群:具备一定Matlab编程基础,熟悉优化算法和数值建模的研究生、科研人员及工程技术人员,尤其适合从事仿真优化、实验设计、代理模型研究的相关领域工作者。; 使用场景及目标:①解决高计算成本的多目标优化问题,通过代理模型降低仿真次数;②在无法解析求导或函数高度非线性的情况下寻找最优变量组合;③复现SCI高水平论文中的优化方法,提升科研可信度与效率;④应用于工程设计、能源系统调度、智能制造等需参数优化的实际场景。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现过程,重点关注克里金模型的构建步骤与NSGA-II的集成方式,建议自行调整测试函数或实际案例验证算法性能,并配合YALMIP等工具包扩展优化求解能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值