给定2个数字,n,m,使得从1到n之间的数字组合,他们的和等于m,求所有组合

递归解决数字组合之和问题
本文讨论了如何使用递归方法解决将一个数字分解为多个数字组合之和的问题,详细介绍了通过双指针技巧简化多数字组合情况的方法,并提供了具体实现代码,帮助读者深入理解递归过程。

这个题目也是非常经典的问题,把一个数字分解成多个数字的组合之和,问有多少种可能,并输出。

微软比赛题目,对于这类题目,最为简单的版本就是,给定一个排好序的数字,求,这个数组中的任意两个数字之和,等于给定的值。

这个就相对比较,简单,2个指针,移动他们的位置,和比给定的大,指针往前挪动,否则,另外一个指针往后挪动。

然后,这个是2个数字的情况,那么多个数字怎么考虑??

如下,具体的测试,看上篇文章,这里主要是把程序粘贴了出来。

强调一句,如果,你能理解里面的那个2个递归(helper),他们之间的关系,以及下标i的变化,我只能说你真的明白,递归的过程了,否则,确实不好理解。

class Test1{
	void findAllAnswer(int n,int dest){
		int[]arr=new int[n];
		helper(dest,0,arr,n);
	}

	private void helper(int dest, int i,int[] arr , int n) {
		// TODO Auto-generated method stub
		if(dest==0)
			prints(arr,n);
		if(dest<=0||i==n) return;
			helper(dest,i+1,arr,n);
		arr[i]=1;
		helper(dest-i-1,i+1,arr,n);
		arr[i]=0;
	}

	private void prints(int[] arr, int n) {
		// TODO Auto-generated method stub
		for(int i=0;i<n;i++){
			if(arr[i]==1)
				System.out.print("+"+(i+1));
		}
		System.out.println();
		}
}
如果实在没看懂,请留言。

### 问题解析 给定 $ n $ 个整数,从中选择若干个数字,使得它们的对 $ m $ 取余后的余数尽可能大。目标是找到这个最大余数。这个问题可以被视为一个变种的子集问题,其中关注的是余数的最大化而非本身。 ### 解法思路 1. **最大余数的范围** 余数的取值范围为 $ 0 $ 到 $ m-1 $,因此最大可能的余数是 $ m-1 $。如果存在一组子集,使得其对 $ m $ 取余等于 $ m-1 $,则直接返回 $ m-1 $。 2. **动态规划方法** 可以使用动态规划来解决此问题。定义一个布尔数组 `dp`,其中 `dp[r]` 表示是否存在一个子集,其对 $ m $ 取余等于 $ r $。初始时,`dp[0] = True`,因为不选择任何元素时为 0。 3. **状态转移** 遍历每一个给定的整数 $ x $,并更新 `dp` 数组。对于每一个可能的余数 $ r $,如果 `dp[r]` 为真,则 `dp[(r + x) % m]` 也应为真。这样可以记录所有可能的余数情况。 4. **寻找最大余数** 遍历 `dp` 数组,找到最大的 $ r $ 满足 `dp[r] == True`,即为所的最大余数。 ### 算法实现 ```python def max_modulo_sum(nums, m): dp = [False] * m dp[0] = True for x in nums: new_dp = dp[:] for r in range(m): if dp[r]: new_r = (r + x) % m new_dp[new_r] = True dp = new_dp # 从后往前找最大的余数 for r in range(m-1, -1, -1): if dp[r]: return r return 0 # 默认返回 0 ``` ### 示例 ```python nums = [3, 4, 5] m = 7 print(max_modulo_sum(nums, m)) # 输出 6 ``` ### 复杂度分析 - **时间复杂度**:$ O(n \cdot m) $,其中 $ n $ 是输入整数的数量,$ m $ 是取余的模数。 - **空间复杂度**:$ O(m) $,用于维护 `dp` 数组。 ### 优化与扩展 - 如果 $ m $ 的值非常大,可以考虑使用位操作或集合优化,减少不必要的计算。 - 若输入数据中包含负数,可以先对所有数取模并调整余数范围。 ### 相关问题 1. 如何在子集中找到为最大值的组合2. 如果要余数为 $ 0 $,如何找到最小的子集? 3. 如何处理包含负数的输入数据? 4. 如何在给定余数的情况下,找到最小的子集? 5. 如果要选择的数字个数必须为奇数,该如何调整动态规划的状态?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值