FactorVAE

Disentangling by Factorising

本文旨在解决 β \beta β-VAE在重建上存在模糊的问题。首先分析了 β \beta β-VAE的问题:
β \beta β-VAE的目标函数为 1 N ∑ i = 1 N [ E q ( z ∣ x ( i ) ) [ log ⁡ p ( x ( i ) ∣ z ) ] − β K L ( q ( z ∣ x ( i ) ) ∥ p ( z ) ) ] \frac{1}{N} \sum_{i=1}^{N}\left[\mathbb{E}_{q\left(z | x^{(i)}\right)}\left[\log p\left(x^{(i)} | z\right)\right]-\beta K L\left(q\left(z | x^{(i)}\right) \| p(z)\right)\right] N1i=1N[Eq(zx(i))[logp(x(i)z)]βKL(q(zx(i))p(z))]我们可以进一步把KL散度部分化解为 E p data ( x ) [ K L ( q ( z ∣ x ) ∥ p ( z ) ) ] = I ( x ; z ) + K L ( q ( z ) ∥ p ( z ) ) \mathbb{E}_{p_{\text {data}}(x)}[K L(q(z | x) \| p(z))]=I(x ; z)+K L(q(z) \| p(z)) Epdata(x)[KL(q(zx)p(z))]=I(x;z)+KL(q(z)p(z))其中 I ( x ; z ) I(x ; z) I(x;z) x , z x,z x,z的互信息,且 q ( z ) = E p data ( x ) [ q ( z ∣ x ) ] q(z)=\mathbb{E}_{p_{\text {data}}}(x)[q(z | x)] q(z)=Epdata(x)[q(zx)] K L ( q ( z ) ∥ p ( z ) ) K L(q(z) \| p(z)) KL(q(z)p(z))部分让隐变量 z z z的各个维度相互独立;然而惩罚互信息部分会减少 z z z中关于 x x x的信息,从而越大的 β \beta β会导致重构能力降低!那么就是说对于KL部分我们期待一个较大的 β \beta β,但是对于互信息部分则不需要一个太大的 β \beta β
本文方法的目标函数则在正常的VAE中加入额外的正则项 1 N ∑ i = 1 N [ E q ( z ∣ x ( i ) ) [ log ⁡ p ( x ( i ) ∣ z ) ] − K L ( q ( z ∣ x ( i ) ) ∥ p ( z ) ) ] − γ K L ( q ( z ) ∥ q ‾ ( z ) ) \begin{aligned} \frac{1}{N} \sum_{i=1}^{N}\left[\mathbb{E}_{q\left(z | x^{(i)}\right)}\left[\log p\left(x^{(i)} | z\right)\right]\right.&-K L\left(q\left(z | x^{(i)}\right) \| p(z)\right) ] -\gamma K L(q(z) \| \overline{q}(z)) \end{aligned} N1i=1N[Eq(zx(i))[logp(x(i)z)]KL(q(zx(i))p(z))]γKL(q(z)q(z))其中 q ‾ ( z ) : = ∏ j = 1 d q ( z j ) \overline{q}(z) :=\prod_{j=1}^{d} q\left(z_{j}\right) q(z):=j=1dq(zj) K L ( q ( z ) ∥ q ‾ ( z ) ) K L(q(z) \| \overline{q}(z)) KL(q(z)q(z))常常称为 T o t a l _ C o r r e l a t i o n Total\_Correlation Total_Correlation,一个用于测量多变量独立性的度量。但是这个部分很难直接处理,可以按照如下进行采样:
对于 q ( z ) q(z) q(z)的采样,可以随机选择一个样本 x ( i ) x^{(i)} x(i),然后从 q ( z ∣ x ( i ) ) q\left(z | x^{(i)}\right) q(zx(i))中采出 z z z;对于 q ‾ ( z ) \overline{q}(z) q(z)的采样,首先从 q ( z ) q(z) q(z)中采样出 d d d个样本,然后每个样本仅仅保留一个维度,从而得到了一个 q ‾ ( z ) \overline{q}(z) q(z)的样本。在本文中采用了另一个更加高效的方法
在这里插入图片描述
对于新引入的KL部分,本文采用density-ratio trick T C ( z ) = K L ( q ( z ) ∥ q ‾ ( z ) ) = E q ( z ) [ log ⁡ q ( z ) q ‾ ( z ) ] ≈ E q ( z ) [ log ⁡ D ( z ) 1 − D ( z ) ] \begin{aligned} T C(z) &=K L(q(z) \| \overline{q}(z))=\mathbb{E}_{q(z)}\left[\log \frac{q(z)}{\overline{q}(z)}\right] \approx \mathbb{E}_{q(z)}\left[\log \frac{D(z)}{1-D(z)}\right] \end{aligned} TC(z)=KL(q(z)q(z))=Eq(z)[logq(z)q(z)]Eq(z)[log1D(z)D(z)]其中 D ( z ) D(z) D(z)是一个二分类器,判断样本 z z z来自 q ( z ) q(z) q(z)时,标签为1。从而整个算法流程为
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值