【论文阅读】Model Stealing Attacks Against Inductive Graph Neural Networks(2021)

摘要

Many real-world data(真实世界的数据) come in the form of graphs(以图片的形式). Graph neural networks (GNNs 图神经网络), a new family of machine learning (ML) models, have been proposed to fully leverage graph data(充分利用图数据) to build powerful applications(构建强大的应用程序). In particular(特别是), the inductive GNNs(归纳 GNNs), which can generalize to unseen data(泛化到不可见的数据), become mainstream in this direction(成为各个方向的主流). Machine learning models have shown great potential(巨大的潜力) in various tasks(各种任务上) and have been deployed(部署) in many real-world scenarios(在许多现实场景). To train a good model(为了训练一个好的模型), a large amount of data(大量的数据) as well as computational resources(计算资源) are needed, leading to(产生) valuable intellectual property(宝贵的知识产权). Previous researc

工作窃取线程池是一种并行计算框架,它旨在提高多线程任务执行的效率。在传统线程池中,任务通常被划分为多个小任务,由线程池中的线程进行处理。然而,当某些线程已完成其任务,而其他线程仍在处理较大的任务时,就会出现工作不均衡的情况。这种情况下,工作窃取线程池就能发挥作用。 工作窃取线程池的核心思想是将任务分成更小的任务,并将它们放入一个双端队列中,该队列由每个线程私有地维护。每个线程在执行完自己的任务后,会从队列的尾部窃取一个任务进行执行。这样,当某个线程空闲时,它可以从其他线程的队列中窃取任务来执行,以达到任务的平衡分配,提高整体的计算性能。 工作窃取线程池的好处是充分利用线程的空闲时间,减少了线程之间的竞争,提高了线程的利用率,从而提高了整个系统的并发性能。 然而,工作窃取线程池也存在一些问题。首先,任务划分成更小的任务会带来额外的开销,如任务分解和合并的开销。其次,不同线程之间的任务执行顺序可能会受到影响,这可能导致一些任务的执行时间较长。 总的来说,工作窃取线程池是一种优化多线程计算性能的有效方式,它通过平衡任务的分配和提高线程的利用率来提高整体的并发性能。但在使用时,需要考虑任务划分的开销和任务执行顺序的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bosenya12

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值