算法训练 未名湖边的烦恼 (动态规划)

问题描述
  每年冬天,北大未名湖上都是滑冰的好地方。北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰鞋都不剩。
  每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个。现在的问题是,这些人有多少种排法,可以避免出现体育组没有冰鞋可租的尴尬场面。(两个同样需求的人(比如都是租鞋或都是还鞋)交换位置是同一种排法)
输入格式
  两个整数,表示m和n
输出格式
  一个整数,表示队伍的排法的方案数。
样例输入
3 2
样例输出
5
数据规模和约定
  m,n∈[0,18]

  问题分析:动态规划学过但不是很懂也不会用,这道题简单来说就是m,n(n<=m)从小到大依次讨论来计算排列数量,dp[i][j]表示有i个人还鞋,j个人租鞋时的排列情况,dp[i][0]是一定为1的,表示第一个人一定为还鞋,而dp[i][j]中j一定小于等于i否则鞋子不够租,
而dp[i][j]时有两种情况,1:dp[i-1][j],这时表示i-1个人还和j个人租时的所有排列情况,在所有排列情况下最后再排一个还鞋的           人,就可以满足i个人还鞋j个人租鞋的情况            
       2:同理,在dp[i][j-1]时表示i个人还和j-1个人租时的所有排列情况,后面再排一个租鞋的人,
得到dp[i][j]=dp[i-1][j]+dp[i][j-1],即i,j的所有排序情况

非递归代码
#include<stdio.h>
#include<string.h> 
#include<iostream>
using namespace std;

int dp[20][20];

int main()
{
	int m,n;
	
	memset(dp,0,sizeof(dp));
	for(int i=1; i<=18; i++)
	{
		dp[i][0] = 1;
		for(int j=1; j<=i; j++)
			dp[i][j] = dp[i-1][j] + dp[i][j-1];
	}
	scanf("%d%d",&m,&n);
	printf("%d\n",dp[m][n]);
	return 0;
}
递归代码
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;

int f(int m,int n)
{
    if(m < n)
        return 0;
    if(n == 0)
        return 1;
    return f(m-1,n) + f(m,n-1);
}

int main()
{
    int m,n;
    while(scanf("%d%d",&m,&n) != EOF)
    {
        int sum = f(m,n);
        printf("%d\n",sum);
    }
    return 0;
}




阅读更多
换一批

没有更多推荐了,返回首页