历届蓝桥杯C/C++程序设计省赛个人题解
2016 年
1. 煤球数目
有一堆煤球,堆成三角棱锥形。具体:
第一层放 1 个,
第二层 3 个(排列成三角形),
第三层 6 个(排列成三角形),
第四层 10 个(排列成三角形),
…
如果一共有 100 层,共有多少个煤球?
请填表示煤球总数目的数字。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
//模拟
int main()
{
int ans = 0;
int num[200];
num[1] = 1;
for(int i = 1; i <= 100; i++){
ans += num[i];
num[i + 1] = num[i] + i + 1;
}
cout << ans << endl;
return 0;
}
171700
2. 生日蜡烛
某君从某年开始每年都举办一次生日 party,并且每次都要吹熄与年龄相同根数的蜡烛。
现在算起来,他一共吹熄了 236 根蜡烛。
请问,他从多少岁开始过生日 party 的?
请填写他开始过生日 party 的年龄数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
//模拟
int main()
{
for (int i = 1; i < 100; i++){
int ans = 0;
for (int j = i; ans < 236; j++){
ans += j;
if(ans == 236){
cout << i << endl;
return 0;
}
}
}
return 0;
}
26
3. 凑算式
B DEF
A + — + ------- = 10
C GHI
(如果显示有问题,可以参见【图 1.jpg】)
这个算式中 A~I 代表 1~9 的数字,不同的字母代表不同的数字。
比如:
6+8/3+952/714 就是一种解法,
5+3/1+972/486 是另一种解法。
这个算式一共有多少种解法?
注意:你提交应该是个整数,不要填写任何多余的内容或说明性文字。
(要注意精度问题,除法转化成乘法再比较)
暴力:
int main()
{
int sum=0;
for(int a=1; a<=9; a++)
for(int b=1; b<=9; b++)
{
if(a==b) continue;
for(int c=1; c<=9; c++)
{
if(c==a||c==b) continue;
for(int d=1; d<=9; d++)
{
if(d==a||d==b||d==c)continue;
for(int e=1; e<=9; e++)
{
if(e==a||e==b||e==c||e==d) continue;
for(int f=1; f<=9; f++)
{
if(f==a||f==b||f==c||f==d||f==e) continue;
for(int g=1; g<=9; g++)
{
if(g==a||g==b||g==c||g==d||g==e||g==f) continue;
for(int h=1; h<=9; h++)
{
if(h==a||h==b||h==c||h==d||h==e||h==f||h==g) continue;
for(int i=1; i<=9; i++)
{
if(i==a||i==b||i==c||i==d||i==e||i==f||i==g||i==h) continue;
int t1=a*c*(100*g+10*h+i);
int t2=b*(100*g+10*h+i);
int t3=c*(100*d+10*e+f);
int t4=10*c*(100*g+10*h+i);
if(t1+t2+t3==t4)
sum++;
}
}
}
}
}
}
}
}
cout<<sum<<endl;
return 0;
}
dfs:
int ans = 0;
int a[20];
int vis[20];
bool f()
{
int t1=a[1]*a[2]*(100*a[3]+10*a[4]+a[5]);
int t2=a[6]*(100*a[3]+10*a[4]+a[5]);
int t3=a[2]*(100*a[7]+10*a[8]+a[9]);
int t4=10*a[2]*(100*a[3]+10*a[4]+a[5]);
if(t1+t2+t3==t4)
return true;
return false;
}
void dfs(int x)
{
if(x == 10){
if(f()){
ans++;
}
return;
}
for (int i = 1; i <= 9; i++){
if(!vis[i]){
vis[i] = 1;
a[x] = i;
dfs(x + 1);
vis[i] = 0;
}
}
}
int main()
{
dfs(1);
cout << ans << endl;
return 0;
}
29
4. 快速排序
排序在各种场合经常被用到。
快速排序是十分常用的高效率的算法。
其思想是:先选一个“标尺”,
用它把整个队列过一遍筛子,
以保证:其左边的元素都不大于它,其右边的元素都不小于它。
这样,排序问题就被分割为两个子区间。
再分别对子区间排序就可以了。
下面的代码是一种实现,请分析并填写划线部分缺少的代码。
#include <stdio.h>
void swap(int a[], int i, int j)
{
int t = a[i];
a[i] = a[j];
a[j] = t;
}
int partition(int a[], int p, int r)
{
int i = p;
int j = r + 1;
int x = a[p];
while(1){
while(i<r && a[++i]<x);
while(a[–j]>x);
if(i>=j) break;
swap(a,i,j);
}
______________________;
return j;
}
void quicksort(int a[], int p, int r)
{
if(p<r){
int q = partition(a,p,r);
quicksort(a,p,q-1);
quicksort(a,q+1,r);
}
}
int main()
{
int i;
int a[] = {5,13,6,24,2,8,19,27,6,12,1,17};
int N = 12;
quicksort(a, 0, N-1);
for(i=0; i<N; i++) printf("%d ", a[i]);
printf("\n");
return 0;
}
注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。
将标尺p放到中间位置
swap(a,p,j)
5. 抽签
X 星球要派出一个 5 人组成的观察团前往 W 星。
其中:
A 国最多可以派出 4 人。
B 国最多可以派出 2 人。
C 国最多可以派出 2 人。
…
那么最终派往 W 星的观察团会有多少种国别的不同组合呢?
下面的程序解决了这个问题。
数组 a[] 中既是每个国家可以派出的最多的名额。
程序执行结果为:
DEFFF
CEFFF
CDFFF
CDEFF
CCFFF
CCEFF
CCDFF
CCDEF
BEFFF
BDFFF
BDEFF
BCFFF
BCEFF
BCDFF
BCDEF
…
(以下省略,总共 101 行)
#include <stdio.h>
#define N 6
#define M 5
#define BUF 1024
void f(int a[], int k, int m, char b[])
{
int i,j;
if(k==N){
b[M] = 0;
if(m==0) printf("%s\n",b);
return;
}
for(i=0; i<=a[k]; i++){
for(j=0; j<i; j++) b[M-m+j] = k+‘A’;
______________________; //填空位置
}
}
int main()
{
int a[N] = {4,2,2,1,1,3};
char b[BUF];
f(a,0,M,b);
return 0;
}
仔细阅读代码,填写划线部分缺少的内容。
注意:不要填写任何已有内容或说明性文字。
答: k+1代表哪个国家,m-i代表还剩下多少名额
f(a, k + 1, m - i, b);
6. 方格填数
如下的 10 个格子
±-±-±-+
| | | |
±-±-±-±-+
| | | | |
±-±-±-±-+
| | | |
±-±-±-+
(如果显示有问题,也可以参看【图 1.jpg】)
填入 0~9 的数字。要求:连续的两个数字不能相邻。
(左右、上下、对角都算相邻)
一共有多少种可能的填数方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
dfs
int a[50][50];
int vis[100];
int v[50][50];
int ans = 0;
bool f(int i, int m, int n)
{
if(!vis[i] && abs(i- a[m-1][n]) != 1&& abs(i- a[m+1][n]) != 1&&abs(i- a[m][n-1]) != 1&&abs(i- a[m][n+1]) != 1&&abs(i- a[m-1][n-1]) != 1&&abs(i- a[m+1][n+1]) != 1&&abs(i- a[m-1][n+1]) != 1&&abs(i- a[m+1][n-1]) != 1){
return true;
}
return false;
}
void dfs(int x, int m, int n)
{
if(x == 11 && m == 3 && n == 4){
ans++;
return;
}
for (int i = 0; i <= 9; i++){
if(f(i, m, n)){
vis[i] = 1;
a[m][n] = i;
if (n == 4)
{
dfs(x + 1, m + 1, 1);
}else{
dfs(x + 1, m, n + 1);
}
a[m][n] = INF;
vis[i] = 0;
}
}
}
int main()
{
memset(a, INF, sizeof(a));
dfs(1, 1, 2);
cout << ans << endl;
return 0;
}
暴力
int main()
{
int sum=0;
for(int a=0; a<=9; a++)
for(int b=0; b<=9; b++)
{
if(abs(b-a)==1||b==a) continue;
for(int c=0; c<=9; c++)
{
if(abs(c-b)==1||c==a||c==b) continue;
for(int d=0; d<=9; d++)
{
if(abs(d-a)==1||d==a||d==b||d==c) continue;
for(int e=0; e<=9; e++)
{
if(abs(e-a)==1||abs(e-b)==1||abs(e-d)==1||e==a||e==b||e==c||e==d) continue;
for(int f=0; f<=9; f++)
{
if(abs(f-a)==1||abs(f-b)==1||abs(f-c)==1||abs(f-e)==1||f==a||f==b||f==c||f==d||f==e) continue;
for(int g=0; g<=9; g++)
{
if(abs(g-b)==1||abs(g-c)==1||abs(g-f)==1||g==a||g==b||g==c||g==d||g==e||g==f) continue;
for(int h=0; h<=9; h++)
{
if(abs(h-d)==1||abs(h-e)==1||h==a||h==b||h==c||h==d||h==e||h==f||h==g) continue;
for(int i=0; i<=9; i++)
{
if(abs(i-d)==1||abs(i-e)==1||abs(i-f)==1||abs(i-h)==1||i==a||i==b||i==c||i==d||i==e||i==f||i==g||i==h) continue;
for(int j=0; j<=9; j++)
{
if(abs(j-e)==1||abs(j-f)==1||abs(j-g)==1||abs(j-i)==1||j==a||j==b||j==c||j==d||j==e||j==f||j==g||j==h||j==i) continue;
sum++;
}
}
}
}
}
}
}
}
}
cout<<sum<<endl;
return 0;
}
1580(注意此答案为没有重复填入0-9)
7. 剪邮票
如【图 1.jpg】, 有 12 张连在一起的 12 生肖的邮票。
现在你要从中剪下 5 张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,【图 2.jpg】,【图 3.jpg】中,粉红色所示部分就是合格的剪取。
请你计算,一共有多少种不同的剪取方法。
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
分析:
- 最开始很简单就想到dfs,就是从每个点开始 dfs,把每种可能用字符串表示加入到set里去重,最后看下set的大小就是方案数,但答案错了,,,,
- 程序得出82,少了若干方案
- 想了一下,有几种特别的dfs不会算出,因为dfs是一条路走到黑的,下面这种情况就不会判断出
就是只要一笔画不完的正确解法,都不会判断出来。
下面是错误代码
#include <bits/stdc++.h>
using namespace std;
#define db(x) cout<<x<<endl
typedef long long ll;
const int N = 1e4 + 10;
const int INF = 0x3f3f3f;
int dir[4] = {5, -5, 1, -1};
int vis[20]; //判断是否被访问
set<string> s; //保存路径
void dfs(int x, int k, string str)
{
if(x == 5){
cout << str << endl;
sort(str.begin(), str.end());
s.insert(str);
return;
}
for (int i = 0; i < 4; i++){
int num = k + dir[i];
if(!vis[num] && num >= 1 && num <= 14 && num != 5 && num != 10){
vis[num] = 1;
str[x] = 'a' + num - 1;
// cout << num << endl;
dfs(x + 1, num, str);
vis[num] = 0;
}
}
}
int main()
{
string a = "00000";
for (int i = 1; i <= 14; i++){
if(i != 5 && i != 10){
a[0] = 'a' + i - 1;
memset(vis, 0, sizeof(vis));
vis[i] = 1;
dfs(1, i, a);
}
}
cout << s.size() << endl;
return 0;
}
- 那么怎么正确判断呢?
只需要改动一点,就是让上面的代码dfs少一个参数,k,代表当前走到哪的k,每次递归时都从走过的地方开始dfs,而不是接着上一层的走
#include <bits/stdc++.h>
using namespace std;
#define db(x) cout << x << endl
typedef long long ll;
const int N = 1e4 + 10;
const int INF = 0x3f3f3f;
int dir[4] = {5, -5, 1, -1};
int vis[20];
set<string> s;
void dfs(int x, string str)
{
if (x == 5)
{
// cout << str << endl;
sort(str.begin(), str.end());
s.insert(str);
return;
}
for (int j = 1; j <= 14; j++){
if(j != 5 && j != 10 && vis[j]){
int k = j;
for (int i = 0; i < 4; i++)
{
int num = k + dir[i];
if (!vis[num] && num >= 1 && num <= 14 && num != 5 && num != 10)
{
vis[num] = 1;
str[x] = 'a' + num - 1;
// cout << num << endl;
dfs(x + 1, str);
vis[num] = 0;
}
}
}
}
}
int main()
{
string a = "00000";
for (int i = 1; i <= 14; i++)
{
if (i != 5 && i != 10)
{
a[0] = 'a' + i - 1;
memset(vis, 0, sizeof(vis));
vis[i] = 1;
dfs(1, a);
}
}
cout << s.size() << endl;
return 0;
}
答案:116
8. 四平方和
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多 4 个正整数的平方和。
如果把 0 包括进去,就正好可以表示为 4 个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对 4 个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数 N (N<5000000)
要求输出 4 个非负整数,按从小到大排序,中间用空格分开例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
峰值内存消耗 < 256M
CPU 消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main 函数需要返回 0
注意: 只使用 ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
分析:暴力 ???3000ms
#include <bits/stdc++.h>
using namespace std;
#define db(x) cout << x << endl
typedef long long ll;
const int N = 1e4 + 10;
const int INF = 0x3f3f3f;
int main()
{
int num;
cin >> num;
for(int i = 0; i < 3000; i++)
for (int j = 0; j < 3000; j++)
for (int k = 0; k < 3000; k++){
int h = sqrt(num - i * i - j * j - k * k);
if (i * i + j * j + k * k + h * h == num){
printf("%d %d %d %d\n", i, j, k, h);
return 0;
}
}
return 0;
}
下面时剪枝过的做法
#include <bits/stdc++.h>
using namespace std;
const int maxn = 10000;
int mpt[5000010] ={0}; //mpt[i] = 1表示i 能够用两个完全平方数相加而得。
int n;
void init()
{
for(int i = 0 ; i*i <= n ; i ++)
for(int j = 0 ; j*j <=n ; j ++)
if(i*i+j*j <= n) mpt[i*i+j*j] = 1;
}
int main()
{
int flag = false;
scanf("%d",&n);
init();
for(int i = 0 ; i * i <= n ; i ++)
{
for(int j = 0 ; j * j <= n ; j ++){
if(mpt[n - i*i - j*j] == 0)
continue; //如果剩下的差用两个完全平方数不能组合出来就不继续
for(int k = 0 ; k * k <= n ; k ++)
{
int temp = n - i*i - j*j - k*k;
double l = sqrt((double) temp);
if(l == (int)l )
{
printf("%d %d %d %d\n",i,j,k,(int)l);
flag = true;
break;
}
}
if(flag)break;
}
if(flag)break;
}
return 0;
}
9. 交换瓶子
有 N 个瓶子,编号 1 ~ N,放在架子上。
比如有 5 个瓶子:
2 1 3 5 4
要求每次拿起 2 个瓶子,交换它们的位置。
经过若干次后,使得瓶子的序号为:
1 2 3 4 5
对于这么简单的情况,显然,至少需要交换 2 次就可以复位。
如果瓶子更多呢?你可以通过编程来解决。
输入格式为两行:
第一行: 一个正整数 N(N<10000), 表示瓶子的数目
第二行:N 个正整数,用空格分开,表示瓶子目前的排列情况。
输出数据为一行一个正整数,表示至少交换多少次,才能完成排序。
例如,输入:
5
3 1 2 5 4
程序应该输出:
3
再例如,输入:
5
5 4 3 2 1
程序应该输出:
2
峰值内存消耗 < 256M
CPU 消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main 函数需要返回 0
注意: 只使用 ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
分析:贪心的一次找到每一位该在的位置。然后交换。
#include <bits/stdc++.h>
using namespace std;
#define db(x) cout << x << endl
typedef long long ll;
const int N = 1e4 + 10;
const int INF = 0x3f3f3f;
int a[N];
int main()
{
int n;
cin >> n;
int ans = 0;
for (int i = 1; i <= n; i++){
cin >> a[i];
}
for (int i = 1; i <= n; ){
if(a[i] != i){
swap(a[i], a[a[i]]);
ans++;
}else{
i++
}
}
cout << ans << endl;
return 0;
}
10. 最大比例
X 星球的某个大奖赛设了 M 级奖励。每个级别的奖金是一个正整数。
并且,相邻的两个级别间的比例是个固定值。
也就是说:所有级别的奖金数构成了一个等比数列。比如:
16,24,36,54
其等比值为:3/2
现在,我们随机调查了一些获奖者的奖金数。
请你据此推算可能的最大的等比值。
输入格式:
第一行为数字 N (0<N<100),表示接下的一行包含 N 个正整数
第二行 N 个正整数 Xi(Xi<1 000 000 000 000),用空格分开。每个整数表示调查到的某人的奖金数额
要求输出:
一个形如 A/B 的分数,要求 A、B 互质。表示可能的最大比例系数测试数据保证了输入格式正确,并且最大比例是存在的。例如,输入:
3
1250 200 32
程序应该输出:
25/4
再例如,输入:
4
3125 32 32 200
程序应该输出:
5/2
再例如,输入:
3
549755813888 524288 2
程序应该输出:
4/1
峰值内存消耗 < 256M
CPU 消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main 函数需要返回 0
注意: 只使用 ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
分析:辗转相除法
#include <bits/stdc++.h>
using namespace std;
#define db(x) cout << x << endl
typedef long long ll;
const int N = 100 + 10;
const int INF = 0x3f3f3f3f;
ll arr[N];
ll gcd(ll a, ll b)
{
if(a < b)
swap(a, b);
return b == 0 ? a : gcd(b, a % b);
}
ll f(ll a, ll b)
{
if(a < b)
swap(a, b);
if(a == b)
return a;
else
return f(b, a / b);
}
int main()
{
ll n, num;
cin >> n;
set<ll> s;
for (int i = 0; i < n; i++){
cin >> num;
s.insert(num);
}
num = 0;
for (set<ll>::iterator it = s.begin(); it != s.end(); it++){
arr[num++] = *it;
}
if (num == 1)
{
cout << "1/1" << endl;
return 0;
}
ll e = gcd(arr[0], arr[1]);
ll a = arr[0] / e;
ll b = arr[1] / e;
ll c, d;
for (int i = 1; i < num - 1; i++){
// cout << "fd" << endl;
e = gcd(arr[i], arr[i + 1]);
c = arr[i] / e;
d = arr[i + 1] / e;
a = f(a, c);
b = f(b, d);
}
cout << b << "/" << a << endl;
return 0;
}