Python 实现终端实时获取股票价格

GitHub 里老早之前就 Star 了 felixglow/Stock 这个项目,原作者 felixglow。昨天晚上又想起这个来,于是今儿早上就拿出来看——我对其中相当多的部分都不熟悉,有些还是第一次了解。在这里将我的理解记录下来,其中的错谬之处,还望各位大神指正。



实现效果



实现思路

README,作者这样写道:

通过调用新浪股票API,实时查询股票价格
支持查询多支股票,通过threading多线程同时查询结果
通过Queue实现线程池
requests请求接口
optparse实现命令行参数处理

这就是这个项目的主要思路——爬取新浪股票 API 来获取数据,通过 threading 实现多线程以达到同时查询多支股票的目的,最后用 optparse 实现命令行参数的处理。



具体解析

__author__ = 'felix'
# 原作者为 felix

import requests
# requests 用于爬取新浪股票 API
import time
import sys
# sys 用于在解释器中交互
import threading
# threading 用于多线程处理    

from Queue import Queue
# Queue 是有关队列的库
from optparse import OptionParser
# OptionParser 用于在命令行中添加选项

class Worker(threading.Thread):
# 创建类 Work,多线程获取

    def __init__(self, work_queue, result_queue):
    # 写入必须绑定的强制属性 self, work_queue, result_queue
    # __init__ 方法的第一个参数一定是 self,用于表示创建的实例本身
    # 其中,实例是根据类来创建的
    # 在 __init__ 方法内部,可将各种属性绑定到 self,因为 self 指向创建的实例本身

        threading.Thread.__init__(self)
        self.work_queue = work_queue
        self.result_queue = result_queue
        self.start()

    def run(self):
    # 增加一个新方法 run

        while True:
            func, arg, code_index = self.work_queue.get()
            # 获取 func, arg, code_index
            res = func(arg, code_index)
            self.result_queue.put(res)
            if self.result_queue.full():
                res = sorted([self.result_queue.get() for i in range(self.result_queue.qsize())], key=lambda s: s[0], reverse=True)
                # sorted() 是用于排序的方法,返回副本,原始输入不变
                # Queue.get() 用于获取队列
                # Queue.qsize() 返回队列大小         
                # key=lambda s: s[0]:关键词为 lambda s: s[0]
                # lambda s: s[0]:匿名函数,返回第一个元素
                # reverse=True:降序排列      
                res.insert(0, ('0', u'名称     股价'))
                # list.insert() 用于将指定对象插入列表的指定位置        
                print '***** start *****'
                for obj in res:
                    print obj[1]
                print '***** end *****\n'
            self.work_queue.task_done()
            # 在完成一项工作后,Queue.task_done() 会向任务已经完成的队列发送一个信号       


class Stock(object):
# 股票实时价格获取

    def __init__(self, code, thread_num):
        self.code = code
        self.work_queue = Queue()
        self.threads = []
        self.__init_thread_poll(thread_num)

    def __init_thread_poll(self, thread_num):
        self.params = self.code.split(',')
        # parmas 会向函数传入一个字典
        self.params.extend(['s_sh000001', 's_sz399001'])  
        # 默认获取沪指、深指
        # extend(): 扩展,与 append() 的区别为,extend() 加入的元素是分别单个加入的
        self.result_queue = Queue(maxsize=len(self.params[::-1]))
        for i in range(thread_num):
            self.threads.append(Worker(self.work_queue, self.result_queue))

    def __add_work(self, stock_code, code_index):
        self.work_queue.put((self.value_get, stock_code, code_index))
        # self.value_get 涉及到下面的装饰器        

    def del_params(self):
        for obj in self.params:
            self.__add_work(obj, self.params.index(obj))

    def wait_all_complete(self):
        for thread in self.threads:
            if thread.isAlive():
            # 判断线程是否是激活的
            # 从调用 start() 方法启动线程,到 run() 方法执行完毕或者遇到未处理异常而中断,这段时间内线程是激活的           
                thread.join()
                # join() 的作用是阻塞进程直到线程执行完毕
                # 依次检查线程池中的线程是否接触,没有结束就阻塞线程直到线程结束
                # 如果结束则跳转执行下一个线程的 join() 函数                 

    @classmethod
    # 装饰器,返回函数的高阶函数    
    def value_get(cls, code, code_index):
        slice_num, value_num = 21, 3
        name, now = u'——无——', u'  ——无——'
        if code in ['s_sh000001', 's_sz399001']:
            slice_num = 23
            value_num = 1
        r = requests.get("http://hq.sinajs.cn/list=%s" % (code,))
        # 爬取新浪股票 API                
        res = r.text.split(',')
        if len(res) > 1:
            name, now = r.text.split(',')[0][slice_num:], r.text.split(',')[value_num]
        return code_index, name + ' ' + now


if __name__ == '__main__':
# 该脚本用于直接运行,而不能被 import
    parser = OptionParser(description="Query the stock's value.", usage="%prog [-c] [-s] [-t]", version="%prog 1.0")
    # 生成命令行说明
    # %prog 将会以当前程序名的字符串来代替    
    parser.add_option('-c', '--stock-code', dest='codes',
                      help="the stock's code that you want to query.")
    # 使用 add_option() 来定义命令行参数,即加入选项
    # dest 是储存的变量                     
    parser.add_option('-s', '--sleep-time', dest='sleep_time', default=6, type="int",
                      help='How long does it take to check one more time.')
    parser.add_option('-t', '--thread-num', dest='thread_num', default=3, type='int',
                      help="thread num.")
    options, args = parser.parse_args(args=sys.argv[1:])
    # 设置好命令行后,用 parse_args() 来解析命令行
    assert options.codes, "Please enter the stock code!"  
    # 是否输入股票代码
    if filter(lambda s: s[:-6] not in ('sh', 'sz', 's_sh', 's_sz'), options.codes.split(',')):  
    # 股票代码输入是否正确
        raise ValueError

    stock = Stock(options.codes, options.thread_num)

    while True:
        stock.del_params()
        time.sleep(options.sleep_time)
        # sleep() 用于使程序休眠

我的想法

从学习 Python 到现在也已经是不短的时间了,但最近觉得自己原地踏步了好久,一直没什么长进,于是想看一看真正有使用价值的代码是什么样子的。上面这部分内容,与其说是 具体解析,还不如说是做了所有的注释工作,但对于我这样已经了解 Python 的基本语法和较为初级并常用的第三方库的学习者来说,这样一个不到百行的项目,应该是比较合适的练手材料。对这个项目中所用到的方法和库,有些我只是了解,有些甚至以前还没有听说过,因而过一遍代码思路和细节部分,是比较值得的。



记录

截止到东八区 2016 年 12 月 19 日 14:46 ,这个项目一共有 4 个 Watch,37 个 Star 和 37 个 Fork。

展开阅读全文

没有更多推荐了,返回首页