盛顿大学教授Pedro Domingos在本周结束的ACM Webminar上介绍了他认为的机器学习五大流派。他认为,机器学习中符号主义者的代表人物是Mitchell、 Muggleton、Quilan,联结主义者代表是LeCun、Hinton和Bengio,进化主义代表是Koda、Holland以及Lipson,贝叶斯派代表人物是Heckerman,、Pearl和Jordan,Analogizer代表人物是Vapnik等。
机器之心对Pedro Domingos的演讲幻灯片进行了编译和总结:
1、知识从何而来
Pedro Domingos认为,知识来源于进化、经验、文化和计算机。对于知识和计算机的关系,他引用了Facebook人工智能实验室负责人Yann LeCun的一段话:将来,世界上的大部分知识将由机器提取出来,并且将长驻与机器中。
2、计算机如何发现新知识
Pedro Domingos帮助计算机获取新知识,可以通过以下五种方法来实现
填充现存知识的空白
对大脑进行仿真
对进化进行模拟
系统性的减少不确定性
注意新旧知识之间的相似点
3、机器学习的五大流派
符号主义代表人物
符号主义算法
联结主义代表人物
神经元和人造神经元
反向传播算法图示
谷歌自主识别出猫的神经网络
进化主义代表人物
基因算法
基因编程
进化机器人
Pedro Domingos在这里提到了基于生物进化理论的「海星机器人」,该机器人由佛蒙特大学的Josh Bongard制造,能够通过内部模拟来「感知」自己身体各部件的状况,并进行连续建模,从而在不需要外部编程的情况下自己学会走路,当机器人外部受到破坏,比如说失去了一条腿,它可以重新建模并学习到一种新的行走方式。Josh Bongard在论文《Evolved Machines Shed Light on Robustness and Resilience》(点击查看)中对此进行了详细介绍。
贝叶斯派代表人物
概率推理
基于概率统计的贝叶斯算法最常见的应用就是反垃圾邮件功能,贝叶斯分类的运作是借着使用标记与垃圾邮件、非垃圾邮件的关连,然后搭配贝叶斯推断来计算一封邮件为垃圾邮件的可能性。
Analogizer代表人物
近邻算法nearest neighbor
内核机器
基于该理论的Netflix推荐系统
4、展望
Pedro Domingos总结了五大流派目前存在的问题和解决方案,但他也重点强调,我们真正需要的是可以一次性解决这些所有问题的统一算法。
5、各学派的综合
表示
概率逻辑(例如马尔可夫逻辑模型)
带权公式,状态分布
评估
后验概率
用户定义的目标函数
最优化
公式发现:基因编程
权值学习:反向传播
6、通用学习者
Pedro Domingos认为,要研究一个解决所有问题的通用算法,创造一个「通用学习者」,还需要很多工作去做。而通用学习者的出现将在以下四方面发挥巨大价值:
家用机器人
全球范围的智力互联网
癌症治疗解决方案
全方位的推荐系统
机器之心,最专业的前沿科技媒体和产业服务平台,每日提供优质产业资讯与深度思考,欢迎关注微信公众号「机器之心」(almosthuman2014),或登录机器之心网站www.almosthuman.cn查看更多精彩内容。