codeforce 327E.Axis Walking

本文介绍了一个基于状态压缩动态规划的问题实例,通过具体的代码实现展示了如何利用Lowbit技巧来高效解决组合计数问题,并提供了完整的算法思路及其实现细节。
摘要由CSDN通过智能技术生成
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d.

Iahub has n positive integers a1, a2, ..., an. The sum of those numbers is d. Suppose p1, p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1, b2 = ap2 and so on. The array b is called a "route". There are n! different routes, one for each permutation p.

Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ j ≤ n) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.

Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those k numbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (1 ≤ n ≤ 24). The following line contains n integers: a1, a2, ..., an (1 ≤ ai ≤ 109).

The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.

Output

Output a single integer — the answer of Iahub's dilemma modulo 1000000007 (109 + 7).

Examples
Input
3
2 3 5
2
5 7
Output
1
Input
3
2 2 2
2
1 3
Output
6
Note

In the first case consider six possible orderings:

  • [2, 3, 5]. Iahub will stop at position 2, 5 and 10. Among them, 5 is bad luck for him.
  • [2, 5, 3]. Iahub will stop at position 2, 7 and 10. Among them, 7 is bad luck for him.
  • [3, 2, 5]. He will stop at the unlucky 5.
  • [3, 5, 2]. This is a valid ordering.
  • [5, 2, 3]. He got unlucky twice (5 and 7).
  • [5, 3, 2]. Iahub would reject, as it sends him to position 5.

In the second case, note that it is possible that two different ways have the identical set of stopping. In fact, all six possible ways have the same stops: [2, 4, 6], so there's no bad luck for Iahub.

#include <cstdio>
#include <cstring>
#include <algorithm>
#define lowbit(x) (x & (-x))
//求出2^p(其中p: x 的二进制表示数中, 右向左数第一个1的位置)
//如6的二进制表示为110,向左数第零个为0,第一个为1,则p=1,故Lowbit(6) = 2^1 = 2
using namespace std;
int const MOD = 1e9 + 7;
int const MAX = (1 << 24) + 1;
long long sum[MAX],dp[MAX];
int a[MAX], no[2];
int main()
{
    int n,k;
    scanf("%d",&n);
    for(int i=0; i<n; i++)
    {
        scanf("%d",&a[i]);
        sum[1<<i]=a[i];
    }
    scanf("%d",&k);
    for(int i=0; i<k; i++)
        scanf("%d",&no[i]);
    dp[0]=1;
    for(int i=1; i<(1<<n); i++)//sum记录的的是选的几个1后的和//
    {
        sum[i]=sum[i&~lowbit(i)]+sum[lowbit(i)];//选01中1的个数和计算//
        if(sum[i]==no[0]||sum[i]==no[1])
            continue;
        for(int j=i;j!=0;j-=lowbit(j))
        {
            dp[i]+=dp[i&~lowbit(j)];
            if(dp[i]>MOD)
                dp[i]-=MOD;
        }
    }
    printf("%I64d\n",dp[(1<<n)-1]);
}
这个状态压缩出乎意料,一千六百万数组没有炸内存,遍历一遍中间还有个小循环没有超时,毕竟CF跑的快。
学会了lowbit这个用法,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值