Grit_007
码龄7年
关注
提问 私信
  • 博客:51,368
    51,368
    总访问量
  • 22
    原创
  • 741,075
    排名
  • 18
    粉丝
  • 0
    铁粉

个人简介:每天进步一点点。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-05-14
博客简介:

Grit_007的博客

博客描述:
互联网行业的搬运工
查看详细资料
个人成就
  • 获得27次点赞
  • 内容获得13次评论
  • 获得114次收藏
创作历程
  • 1篇
    2019年
  • 29篇
    2018年
成就勋章
TA的专栏
  • 机器学习
    9篇
  • Python
  • C++
  • 算法导论
    2篇
  • 其他
    6篇
  • 深度学习
    13篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

如何在Google官方实现的DeeplavV3+上面训练自己的数据集

环境:ubuntu 16.04 + TensorFlow 1.8.1 + cuda 9.0 + cudnn 7.0 +python2.7 tensorflow 项目链接 https://github.com/tensorflow/models.git下载后解压,所需要的工程在models/...
原创
发布博客 2019.03.08 ·
803 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

解决Linux环境下GPU运行Paddlepaddle找不到libcublas.so文件问题

前言最近百度开源了用paddle框架实现的用于做语义分割的deeplabv3+模型,正好自己也在做这方面的事情,所以就把模型拿过来跑一下inference,结果是各种采坑,所以记录下来,以后便于查阅!1、首先需要在Linux上面安装GPU版本的paddle,我用的是pip安装的,感觉docker太麻烦。 安装命令: pip install paddlepaddle-gpu 此命名默认安装的...
原创
发布博客 2018.12.14 ·
11309 阅读 ·
2 点赞 ·
6 评论 ·
6 收藏

堆与堆排序

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/MoreWindows/article/details/6709644  堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。...
转载
发布博客 2018.12.11 ·
268 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

什么是CPU密集型、IO密集型?

版权声明:转载请注明来源微信公众号:Java技术栈(ID:javastack),非法转载者将追究其法律责任。 https://blog.csdn.net/youanyyou/article/details/78990156 CPU密集型(CPU-bound)CPU...
转载
发布博客 2018.12.10 ·
531 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器/深度学习中的特征工程

版权声明:本文为博主原创文章,转载请注明来源。 https://blog.csdn.net/Dream_angel_Z/article/details/49388733 本文是一篇关于特征工程的总结类文章,如有不足之处或理解有偏差的地方,还望大家多多指点。首先,给...
转载
发布博客 2018.12.08 ·
1178 阅读 ·
2 点赞 ·
2 评论 ·
5 收藏

pycharm远程连接服务器

http://blog.csdn.net/duankaifei/article/details/418986411、写在前面    之前一致用putty,ssh,修改代码,或者本地修改,上传到服务器,各种不爽,现在改用xshell,但是有时候还是不方便感觉,于是自己配置了远程连接pycharm,这样不用总是到代码里...
转载
发布博客 2018.11.28 ·
1772 阅读 ·
2 点赞 ·
1 评论 ·
10 收藏

CNN结构演化

前言文章仅给出各个模型的大概结构,详细内容请参考相关的论文及博客,在文章中我也会推荐一些资料。一、早期尝试—1998 LeNet 网络结构详细介绍和代码实现请参考这里:LeNet二、历史突破—2012 AlexNet这是其网络结构,看着比较抽象,我们可以结合具体实现代码来看一下模型结构Sequential容器封装了这个模型的结构,可以很清楚的看到每一层都是用了什么,无非就是卷积层...
原创
发布博客 2018.11.20 ·
1027 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

空间金字塔模型与池化

前言原来一切如此简单与神奇!论文: 《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》 本篇博文主要讲解大神何凯明2014年的paper:《Spatial Pyramid Pooling in Deep Convolutional Networks for Vis...
原创
发布博客 2018.11.19 ·
5832 阅读 ·
5 点赞 ·
1 评论 ·
18 收藏

Linux下实时查看GPU状态

前言现在不管是分布式还是其他服务器还是深度学习训练模型等,都离不开GPU,因此了解一下GPU常见的参数命令以及性能指标是十分重要的,几个十分重要的参数如:温度、内存占用情况、GPU使用情况等。1. 显示当前GPU使用情况Nvidia自带了一个nvidia-smi的命令行工具,会显示显存使用情况:$ nvidia-smi11输出: 2. 周期性输出GPU使用情况但是有...
转载
发布博客 2018.11.19 ·
2590 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

Pytorch框架中的可视化模块—tensorboardX

前言首先说明一下,tensorboardX的用法和tensorboard是十分类似的,后者是TensorFlow框架中的可视化工具。TensorFlow是2016年Google推出的深度学习框架,而pytorch是2017年FaceBook推出的深度学习框架,其接口和设计都比TensorFlow要灵活简单的多,属于后起之秀。1、若读者想看关于TensorFlow的tensorboard的系列教...
转载
发布博客 2018.11.19 ·
921 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Deeplabv3+论文学习笔记粗略总结

1、在本文中,我们考虑了两种使用空间金字塔池模块[18,19,20]或编码器解码器结构[21,22]进行语义分割的神经网络,前者通过不同分辨率的池化特征获取丰富的上下文信息,后者能够获得清晰的对象边界。2、我们提出的模型DeepLabv3+通过添加一个简单而有效的解码器模块来恢复对象边界,扩展了DeepLabv33、batchsize越小,速度越快,权值更新越频繁;且具有随机性,对于非凸损失函...
原创
发布博客 2018.11.13 ·
5181 阅读 ·
3 点赞 ·
0 评论 ·
27 收藏

Deeplabv3+论文学习笔记粗略总结

1、在本文中,我们考虑了两种使用空间金字塔池模块[18,19,20]或编码器解码器结构[21,22]进行语义分割的神经网络,前者通过不同分辨率的池化特征获取丰富的上下文信息,后者能够获得清晰的对象边界。2、我们提出的模型DeepLabv3+通过添加一个简单而有效的解码器模块来恢复对象边界,扩展了DeepLabv33、batchsize越小,速度越快,权值更新越频繁;且具有随机性,对于非凸损失函...
原创
发布博客 2018.11.13 ·
5181 阅读 ·
3 点赞 ·
0 评论 ·
27 收藏

深度学习入门—理论杂谈(5)

前言这部分内容是书上的第六章内容,主要讲的是卷积网络,当然也是最重要的一章。先验概率是指根据以往经验和分析得到的概率,如全概率公式 中的 ,它往往作为“由因求果”问题中的“因”出现。后验概率是指在得到“结果”的信息后重新修正的概率,是“执果寻因”问题中的“因” 。后验概率是基于新的信息,修正原来的先验概率后所获得的更接近实际情况的概率估计。一、卷积网络的结构1、卷积神经⽹络采⽤了三种基本概...
原创
发布博客 2018.11.08 ·
336 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习入门—理论杂谈(4)

前言第四章讲述的是一个定理的证明:神经网络可以计算任何函数,通俗点来说就是不管别人给你一个多么复杂和奇特的函数,总会确保有一个神经网络对任何可能的输入x ,其值f(x)是这个网络的输出(或者说足够的近似)。这个定理说的就是神经网络的普适性,我感觉这句话是废话,如果不成立的话,我们花那么大精力研究神经网络也没有意义。因此这一章pass,有兴趣的可去原书籍上面查看证明过程。最后扔一句结论在这儿:普...
原创
发布博客 2018.11.05 ·
366 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习入门—理论杂谈(3)

前言此部分内容为第三章续一、过度拟合和正则化1、验证集的作用可以理解为培训数据,帮我们学习到更好的超参数(超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,需要对超参数进行优化,给学习机选择一组最优超参数,以提高学习的性能和效果。),其最终目的是为了防止过拟合。2、通过增加训练数据,某种程度上可以有效的减少过拟合的发生,但是训练数据可能很昂贵或难以获得,因此...
原创
发布博客 2018.11.05 ·
192 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习入门—理论杂谈(2)

当我们对某些事情出现严重错误时,我们往往学得最快。但是我们刚刚看到我们的人工神经元在严重错误的情况下学习有很多困难 - 比只是有点错误时要困难得多。更重要的是,事实证明,这种行为不仅发生在这个玩具模型中,而且发生在更一般的网络中。为什么学习这么慢?我们能找到避免这种放缓的方法吗?
原创
发布博客 2018.11.02 ·
281 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

anaconda3在win10环境下安装pytorch0.4 + cuda9.0

前言一、安装torch与torchvision初次安装的时候,没有经验,在安装CUDA时踩了很多坑,各种帖子都看了,比如去官网下载最新的驱动,用DDU将电脑上的显卡卸载干净等,最后还是没装上CUDA。果断放弃了。最后看了各种资料突然发现 ,原来使用 conda install pytorch -c pytorch 命令安装pytorch时,就默认安装了CUDA!!!天了噜,折腾了那么多时间!...
原创
发布博客 2018.11.01 ·
1791 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

深度学习入门—BP算法简单实现

前言算法实现的过程,我感觉就是把公式翻译成代码的过程,关于详细的算法思想介绍,已经写在了上一篇博客中:https://blog.csdn.net/Grit_007/article/details/83509548,需要参考的可以点这一个,这里重点是实现BP算法。一、代码实现我不啰嗦了,直接上代码了,因为看了理论之后,很容易就能读懂代码,而且每一行代码我都加了详细的注释。"""BP算法的简...
原创
发布博客 2018.10.31 ·
759 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

深度学习入门—理论杂谈(1)

前言写文章比较随性,主要是个人学习资料的重点笔记的记录,这是关于深度学习的,学习的目的是打牢深度学习的理论基础。书籍链接:http://neuralnetworksanddeeplearning.com/index.html第一章1、感知机模型网络:说它强大是因为其计算能力可以像其他任何计算设备一样,说其普通是因为它本质上不过是逻辑门而已,实现的都是各种等价的逻辑操作。2、Sigmoid...
原创
发布博客 2018.10.31 ·
389 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

k-Means聚类算法实现

前言机器学习算法主要分为三部分的应用:分类、回归、聚类。前两部分我们都已经介绍过,今天我们来说最后一部分–聚类。首先来说聚类它是一种无监督学习方式,输入的数据集实例中并没有标签,也没有指定的学习任务,算法的结果是产生几个簇,把最相似的数据实例放在一起,而这个相似度的度量,正是算法的核心,本文采用的是基于距离的度量方式(有点类似KNN算法策略)。一、算法实现该算法思想比较简单,我就不啰嗦了,...
原创
发布博客 2018.10.26 ·
242 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多