Hive简介

Hive是一个基于hadoop的数据仓库平台。通过hive,我们可以方便地进行ETL的工作。hive定义了一个类似于SQL的查询语言:HQL,能够将用户编写的QL转化为相应的Mapreduce程序基于Hadoop执行。

HiveFacebook 20088月刚开源的一个数据仓库框架,其系统目标与 pig 有相似之处,但它有一些Pig目前还不支持的机制,比如:更丰富的类型系统、更类似SQL的查询语言、Table/Partition元数据的持久化等。

Hive 可以看成是从SQLMap-Reduce 映射器 

hive的组件和体系架构:

hive web接口启动:./hive --service hwi

浏览器访问:http://localhost:9999/hwi/

默认情况下,Hive元数据保存在内嵌的 Derby 数据库中,只能允许一个会话连接,只适合简单的测试。为了支持多用户多会话,则需要一个独立的元数据库,我们使用 MySQL 作为元数据库,Hive 内部对 MySQL 提供了很好的支持。

Hive安装

内嵌模式:元数据保持在内嵌的Derby模式,只允许一个会话连接

本地独立模式:在本地安装Mysql,把元数据放到Mysql

远程模式:元数据放置在远程的Mysql数据库。

Hive的数据放在哪儿?

数据在HDFSwarehouse目录下,一个表对应一个子目录。

本地的/tmp目录存放日志和执行计划

hive的表分为两种,内表和外表。 
Hive
创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。 
在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。这样外部表相对来说更加安全些,数据组织也更加灵活,方便共享源数据。

使用Mysql作为Hive metaStore的存储数据库

其中主要涉及到的表如下:

表名

说明

关联键

TBLS

所有hive表的基本信息(表名,创建时间,所属者等)

TBL_ID,SD_ID

TABLE_PARAM

表级属性,(如是否外部表,表注释,最后修改时间等)

TBL_ID

COLUMNS

Hive表字段信息(字段注释,字段名,字段类型,字段序号)

SD_ID

SDS

所有hive表、表分区所对应的hdfs数据目录和数据格式

SD_ID,SERDE_ID

SERDE_PARAM

序列化反序列化信息,如行分隔符、列分隔符、NULL的表示字符等

SERDE_ID

PARTITIONS

Hive表分区信息(所属表,分区值)

PART_ID,SD_ID,TBL_ID

PARTITION_KEYS

Hive分区表分区键(即分区字段)

TBL_ID

PARTITION_KEY_VALS

Hive表分区名(键值)

PART_ID

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页