堆排序java

一、解题思路

1.利用完全二叉树构建大顶堆

2.堆顶和堆底元素进行互换,除了堆底元素之外其余元素继续构建大顶堆

3.不断重复2,直到数据全部不再参与大顶堆,排序完成

二、相关术语

完全二叉树:数据从上到下从左到右依次排列

大顶堆:所有节点都是父节点的值大于等于左右孩子的值(最多一个父亲,孩子可多个)  最大的值是根节点

Arr[i]的左孩子arr[2i+1]

Arr[i]的右孩子arr[2i+2]

Arr[i]的父节点arr[(i-1)/2]

构建条件:arr[i]>=arr[2i+1]&&Arr[i]>=arr[2i+2]

三、如何构建大顶堆:

定义游标从后往前检测所有节点

1.定义parent游标指向要检测的节点

2.定义parent的左孩子child,判断有无左孩子(有孩子一定有左孩子)

3.如果没有左孩子,则parent指向的节点符合大顶堆,继续向前检测

4.如果有左孩子,判断有无右孩子,child指向左右孩子最大值

5.判断parent和child的值进行比较,如果parent的值大,继续向前检测

6.如果parent指向的值小,父子节点进行交换,交换完成之后parent指向child,child继续指向左右孩子的最大值,继续比较,直到child为空或者parent指向的值大

四、Java代码

import java.util.Arrays;
//堆排序
public class dui {
	public static void main(String[] args) {
		int[] arr =new int[] {10,5,2,8,4,6};
		sort(arr);
		System.out.println(Arrays.toString(arr));
	}
	public static void sort(int[] arr) {
		for(int i=arr.length/2-1;i>=0;i--) {
			adjust(arr,i,arr.length);
		}
		for(int i=arr.length-1;i>=0;i--) {
			int temp =arr[i];
			arr[i]=arr[0];
			arr[0]=temp;
			adjust(arr,0,i);
		}
	}
	public static void adjust(int[] arr,int parent,int length) {
		int child =2*parent+1;
		while(child<length) {
			int rchild=child+1;
			if(rchild<length && arr[child]<arr[rchild]) {
				child=rchild;
			}
			if(arr[parent]<arr[child]) {
				int temp=arr[parent];
				arr[parent]=arr[child];
				arr[child]=temp;
				parent=child;
				child=2*parent+1;
			}else {
				break;
			}
		}
	}
	
	
}

### Java实现堆排序算法 堆排序是一种基于二叉堆数据结构的高效排序算法,其核心思想是利用最大堆或最小堆来完成数组的有序排列。以下是通过Java实现堆排序的具体代码以及详细的解释。 #### 1. 堆排序的核心逻辑 堆排序分为两个主要阶段:构建初始堆和调整堆。 - **构建初始堆**:将无序序列构建成一个大顶堆(假设升序排序)。 - **调整堆**:交换堆顶元素与最后一个节点的位置,并重新调整剩余部分为新的大顶堆,重复此过程直到整个序列有序[^1]。 #### 2. Java实现堆排序的代码示例 以下是一个完整的Java程序,用于实现堆排序: ```java public class HeapSort { public static void main(String[] args) { int[] array = {4, 10, 3, 5, 1}; System.out.println("原始数组:"); printArray(array); heapSort(array); System.out.println("排序后的数组:"); printArray(array); } // 打印数组的方法 private static void printArray(int[] array) { for (int value : array) { System.out.print(value + " "); } System.out.println(); } // 堆排序方法 public static void heapSort(int[] array) { int n = array.length; // 构建初始的最大堆 for (int i = n / 2 - 1; i >= 0; i--) { adjustHeap(array, i, n); } // 调整堆并逐步缩小范围 for (int i = n - 1; i > 0; i--) { swap(array, 0, i); // 将当前最大的放到最后面 adjustHeap(array, 0, i); // 对剩下的元素重新调整成最大堆 } } // 调整堆的方法 private static void adjustHeap(int[] array, int index, int length) { int largest = index; int leftChild = 2 * index + 1; int rightChild = 2 * index + 2; if (leftChild < length && array[leftChild] > array[largest]) { largest = leftChild; } if (rightChild < length && array[rightChild] > array[largest]) { largest = rightChild; } if (largest != index) { swap(array, index, largest); adjustHeap(array, largest, length); // 继续向下调整子树 } } // 数组元素交换方法 private static void swap(int[] array, int i, int j) { int temp = array[i]; array[i] = array[j]; array[j] = temp; } } ``` #### 3. 关键点解析 - **adjustHeap 方法** 是堆排序中的核心函数,负责维护堆的性质。每次调用该方法都会确保指定索引位置上的元素满足父节点大于等于子节点的要求[^2]。 - **heapSort 方法** 首先通过 `for` 循环自底向上建立初始的大顶堆;随后通过不断交换根节点与最后一个叶子节点的方式逐渐减少待排序区域大小,并持续调整堆以保持顺序[^3]。 #### 4. 时间复杂度分析 堆排序的时间复杂度为 O(n log n),其中 n 表示输入数组长度。这是因为每轮调整都需要对高度为 log n 的完全二叉树进行遍历,而总共有 n 次这样的操作[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值