0403高级算法梳理——随机森林算法梳理

随机森林是一种集成学习方法,通过构建多个决策树并结合它们的预测来提高模型的准确性和泛化能力。该方法包括有放回抽样、特征选择和结合策略,如平均法和投票法。随机森林具有并行化训练、特征重要性评估和对缺失值不敏感的优点,广泛应用于分类和回归任务。然而,它也可能在噪声较大的数据集上过拟合,并且某些特征的取值划分会影响模型效果。
摘要由CSDN通过智能技术生成

一、集成学习的概念

  集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类系统。
在这里插入图片描述
  上图显示出集成学习的一般结构:先产生一组“个体学习器”,再用某种策略将它们组合起来。个体学习器通常由一个现有的学习算法从训练数据中产生,例如C4.5决策树算法、BP神经网络算法。

  集成学习通过将多个学习器进行结合,常常可以获得比单一学习器具有显著优越的泛化性能,这个对于弱学习器尤为明显。
  如何获得一个好的集成学习器呢?每个个体学习器具有一定的准确性(每个学习器不能太坏)和多样性(每个学习器之间存在差异) 。
  集成学习方法可以分为两大类:
    一是个体学习器间存在强依赖关系、必须串行生成序列化方法,代表有Boosting算法;
    二是个体学习器之间不存在强依赖关系、可同时生成的并行化方法,代表有Bagging和随机森林(Random Forest)。

  • 序列集成方法,其中参与训练的基础学习器按照顺序生成(如AdaBoost)。序列方法的原理是利用基础学习器之间的依赖关系。通过对之前训练中错误标记的样本赋值较高的权重,可以提高整体的预测效果。
  • 并行集成方法,其中参与训练的基础学习器并行生成(如Random Forest)。并行方法的原理是利用基础学习器之间的独立性,通过平均可以显著降低错误。

二、个体学习器概念

个体学习器:通常由一个现有的学习算法从训练数据产生。
同质集成中由类型相同的个体学习器组合而成,同质集成中个体学习器可称为基学习器
异质集成中由类型不相同的个体学习器组合而成,异质集成中个体学习器可称为“组件学习器” 或直接称为“个体学习器”。

三、boosting bagging

http://www.cnblogs.com/liuwu265/p/4690486.html
  bagging和boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个更强大的分类器,即将弱分类器组装成强分类器。
bagging(并行式集成学习方法)
A)从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping(自助法,有放回抽样方法)的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)
B)每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
C)对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)
在这里插入图片描述
boosting<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值