_Gus_
码龄7年
关注
提问 私信
  • 博客:212,288
    212,288
    总访问量
  • 101
    原创
  • 968,415
    排名
  • 222
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2018-06-03
博客简介:

Gussss的博客

查看详细资料
个人成就
  • 获得45次点赞
  • 内容获得35次评论
  • 获得156次收藏
  • 代码片获得166次分享
创作历程
  • 1篇
    2022年
  • 13篇
    2021年
  • 6篇
    2020年
  • 64篇
    2019年
  • 69篇
    2018年
成就勋章
TA的专栏
  • 笔记
    2篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

352人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

轻量级快速单目深度估计模型

进行深度估计,三维重建,位姿估计实时的轻量级单目深度估计模型,只需一张输入图像,便可进行上述任务。参数量差不多只有3.5M,精度SOTA以下是链接,发表于21____ICCVhttps://openaccess.thecvf.com/content/ICCV2021/papers/Zhou_R-MSFM_Recurrent_Multi-Scale_Feature_Modulation_for_Monocular_Depth_Estimating_ICCV_2021_p...
原创
发布博客 2022.03.05 ·
1279 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

reshape不一致问题

给定RGB图像color_raw =imread(paths[0])/255.0color_raw为[320,1024,3]color_raw.reshape(3,-1).transpose(1,0)-color_raw.reshape(-1,3)结果不等于0
原创
发布博客 2021.11.13 ·
663 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

latex 表格放双列最后一行

https://github.com/texjporg/nidanfloat下载\usepackage{nidanfloat}\begin{table*}[b]\centering\setlength{\tabcolsep}{0.5mm}{
原创
发布博客 2021.06.13 ·
461 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

schedule问题

schedule初始化的时候默认last_epoch为-1,把optimazer里的lr设置为schedule中的初始学习率,初始化的最后一步,里面的ini中会自动调用一次.step(),因此last_epoch为0了,然后又把optimazer里的学习率重新设置为第0步的学习率。因此要先optimazer.step().再schedule.step().因为optimazer.step().会用到学习率,而学习率是schedule.step()设置的。可以用这个看每步optimazer的学习率。
原创
发布博客 2021.05.19 ·
490 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

关于3D视觉的注意事项

假如相机内参不确定,可以简单设置为fx = cx = w/2 and fy = cy = h / 2.https://github.com/TRI-ML/packnet-sfm/issues/38估计内参论文https://arxiv.org/abs/2008.06630点云可视化https://github.com/TRI-ML/packnet-sfm/issues/10
原创
发布博客 2021.05.10 ·
177 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

反向传播的理解

只有conv里面的变量有梯度,其他的都没有loss.backward() 每进行一次,假如梯度不归零的话,weights里面的梯度是累加的,假如Loss是一个数组,mean和sum的区别就是一个尺度因子,就是数组的总个数在loss中减去常数对梯度无任何影响。比如x**2-10000000,因为求导自动忽略单次迭代中,不同batch中的梯度,也是累加的。具体看qq的值x = torch.randn(2,2,1,1)x1 = xw = torch.nn.Conv2d(2,2,(1,1)
原创
发布博客 2021.05.05 ·
261 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

https://blog.csdn.net/guofei_fly/article/details/104486708/

转载https://blog.csdn.net/guofei_fly/article/details/104486708/
原创
发布博客 2021.04.10 ·
408 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Latex Beamer PPT 左边文字右边图片,分栏显示

\begin{frame}{Previous model}{Secert Sharing Scheme}\begin{columns} \column{0.5\textwidth} \begin{itemize} \item { A $(t,n)$ threshold secret sharing scheme allows a dealer to split her secret $s$ into $n$ pieces (also called shares) and distribut.
转载
发布博客 2021.04.07 ·
4304 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

latexPPT一张页面上同时显示4张

转载https://blog.csdn.net/a6822342/article/details/80533135\begin{figure}[htbp]\centering\subfigure[pic1.]{\includegraphics[width=5.5cm]{111.eps}%\caption{fig1}}\quad\subfigure[pic2.]{\includegraphics[width=5.5cm]{111.eps}}\quad\subfigure[pic3.
转载
发布博客 2021.04.07 ·
932 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

自适应参数和为1

def __init__(self): length = 4 self.weight = nn.Parameter(torch.ones(length))def forward(x): weight = F.softmax(self.weight, 0) # softmax 保证每个参数大于等于0 小于等于1 for i in range(len(weight)): s += result[i] * weight[i] ...
原创
发布博客 2021.03.22 ·
274 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

softmax

本篇主要分析softmax函数中的dim参数首先介绍一下softmax函数:设 x = [1,2,3]则softmax(x)= [e 1 e 1 + e 2 + e 3 \frac{e^1}{e^1+e^2+e^3}e1+e2+e3e1​ ,e 2 e 1 + e 2 + e 3 \frac{e^2}{e^1+e^2+e^3}e1+e2+e3e2​ ,e 3 e 1 + e 2 + e 3 \fra...
转载
发布博客 2021.03.21 ·
115 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

except”和“except for 区别

He was fully dressed except for a tie.他衣冠楚楚,只是没打领带。She could utter all the sounds correctly except certain consonants.除了某些辅音,她发音正确。这里的“整体”为“all the sounds”,而“certain consonants”为“部分”,它被减去了。You can find me in the office every day except Wednesday.
原创
发布博客 2021.03.08 ·
941 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

\centering与\begin{center}区别

工作环境(蓝色粗体字为特别注意内容)1,系统环境:Win7 Ultimate sp12,软件环境:pdfTeX 3.1415926-2.3-1.40.12 (MiKTeX 2.9)、WinEdt 7,编译器:PDFTeXify3,参考文献:①https://blog.csdn.net/jpzhu16/article/details/50699755我们经常在LaTeX中使用\begin{center}···\end{center}\begin{center}···\end{center}.
转载
发布博客 2021.02.23 ·
13503 阅读 ·
3 点赞 ·
0 评论 ·
14 收藏

2021-01-30

Could not import backend for traitsui. Make sure you have a suitable UI toolkit like PyQt/PySide or wxPython原因在安装mayavi的时候需要安装一些依赖。解决方案(亲测有效)pip intall mayavi pip install pyqt5
原创
发布博客 2021.01.30 ·
698 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RAFT代码

首先进行RAFT的初始化:有一个选项为args.small。class RAFT(nn.Module): def __init__(self, args): super(RAFT, self).__init__() self.args = args if args.small: self.hidden_dim = hdim = 96 self.context_dim = cdim = 64
原创
发布博客 2020.10.19 ·
18118 阅读 ·
2 点赞 ·
2 评论 ·
15 收藏

pytorch学习笔记(1)-optimizer.step()和scheduler.step()

转https://blog.csdn.net/qq_20622615/article/details/83150963optimizer.step()和scheduler.step()的区别optimizer.step()通常用在每个mini-batch之中,而scheduler.step()通常用在epoch里面,但是不绝对,可以根据具体的需求来做。只有用了optimizer.step(),模型才会更新,而scheduler.step()是对lr进行调整。通常我们有optimizer = o
转载
发布博客 2020.10.18 ·
2915 阅读 ·
2 点赞 ·
0 评论 ·
16 收藏

加载模型

转载1. 读取预训练模型和现有模型的重合部分reference:https://discuss.pytorch.org/t/how-to-load-part-of-pre-trained-model/1113/3pretrained_dict = ...model_dict = model.state_dict()# 1. filter out unnecessary keyspretrained_dict = {k: v for k, v in pretrained_dict..
转载
发布博客 2020.10.18 ·
738 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

unfold解析

先上代码import torchimport numpy as npunfold = torch.nn.Unfold(kernel_size=(2, 3))input = torch.Tensor(np.array(range(120)).reshape(2, 5, 3, 4))output = unfold(input)# each patch contains 30 values (2x3=6 vectors, each of 5 channels)# 4 blocks (2x3 ke
原创
发布博客 2020.10.11 ·
671 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

teamviewer安装

在Ubuntu 20.04上安装TeamViewerTeamViewer是专有的计算机软件,并且不包含在Ubuntu存储库中。我们将从官方的TeamViewer APT存储库下载并安装TeamViewer软件包。打开您的终端并.deb使用以下wget命令下载最新的TeamViewer 软件包:wget https://download.teamviewer.com/download/linux/teamviewer_amd64.deb1下载完成后,请运行以下命令安装TeamViewer
原创
发布博客 2020.10.01 ·
604 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

F.grid_sample

torch.nn.functional.grid_sample()函数的参数grid,表示的是范围为[-1, 1]坐标系下的(x, y, z),坐标与数组的对应关系是:x -> w, y -> h, z -> d,测试代码如下: import numpy as np from torch.nn import functional as F import torch if __name__ == '__main__': d, ..
转载
发布博客 2020.09.18 ·
1858 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多