GwentBoy
码龄4年
关注
提问 私信
  • 博客:35,048
    35,048
    总访问量
  • 6
    原创
  • 1,337,462
    排名
  • 22
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2021-01-20
博客简介:

GwentBoy的博客

查看详细资料
个人成就
  • 获得36次点赞
  • 内容获得3次评论
  • 获得138次收藏
  • 代码片获得311次分享
创作历程
  • 1篇
    2024年
  • 5篇
    2021年
成就勋章
TA的专栏
  • 笔记
    5篇
兴趣领域 设置
  • 大数据
    hive
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【从入门到入土】机器学习——线性回归

回归:回归分析是统计学中的基本概念,主要研究自变量和因变量的关系,通常使用曲线拟合数据点,然后研究如何使曲线到数据点的距离差异最小。回归的目标就是找到一个最佳的拟合线或曲线,来尽可能地穿过或靠近这些散乱的数据点。这条线或曲线就代表了数据点之间的潜在关系或趋势。一旦你找到了这条线或曲线,就可以用它来预测新的数据点的数值了。例如上面这个图,已知蓝色的点,现在找到了一条红线,使得所有点到这条红线的距离最短,所以红线就是目前我们找到的最佳的拟合曲线。
原创
发布博客 2024.03.27 ·
899 阅读 ·
8 点赞 ·
0 评论 ·
26 收藏

kaggle泰坦尼克数据集

发布资源 2021.02.23 ·
zip

digit-recognizer.zip

发布资源 2021.02.23 ·
zip

用学习曲线评估机器学习模型

本文目录什么是学习曲线学习曲线作用绘制学习曲线学习曲线的解读完整代码什么是学习曲线学习曲线就是通过画出不同训练集大小时训练集和验证数据集的准确率,可以看到不同训练集训练出的模型在新数据上的表现,进而来判断模型是否是欠拟合或过拟合。学习曲线的横坐标是训练样本的数量,纵坐标是损失函数的值。学习曲线作用表现能力:也就是模型的预测准确率;对模型进行评估:通过学习曲线可以清晰的看出模型对数据的过拟合和欠拟合;查看模型学习效果:是否可以通过增加训练数据集的方式提高模型准确率。绘制学习曲线先构建一
原创
发布博客 2021.02.03 ·
1547 阅读 ·
3 点赞 ·
1 评论 ·
13 收藏

机器学习中的ROC曲线和AUC指标

什么是ROC曲线ROC曲线反应了TPR和FPR之间的关系。TPR = TP/ (TP+FN) 预测为1 并且预测对的占实际就是1的百分比FPR = FP/ (FP+TN) 预测为1 但是预测错了实际应该为0,占真实值为0的百分比。我们来举个例子看如何计算TPR和FPR。当我们阈值设置为0.9时,即认为socre要大于等于0.9才会判断为P时,对应的TPR = 1 / ( 1 + 9) = 10%,FPR = 0 / (0 + 10) = 0%当我们阈值设置为0.5时,即认为socre要
原创
发布博客 2021.01.28 ·
1277 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

机器学习中的精确率召回率和PR曲线

文章目录阈值对精确率和召回率的影响精确率-召回率曲线阈值对精确率和召回率的影响精确率和召回率是相互矛盾的一组指标,即精确率提高就会导致召回率降低。假设我有一组样本,分别为蓝色点和红色点,我们想要用算法模型预测出红色点。当阈值选择在红色分隔线的位置时:精确率 = 5 / 6 = 0.83召回率 = 5 / 7 = 0.71当阈值选择在黑色分割线的位置时:精确率 = 7 / 10 = 0.7召回率 = 7 / 7 = 1当阈值选择在蓝色分割线的位置时:精确率 = 3 / 3 = 1
原创
发布博客 2021.01.28 ·
8853 阅读 ·
7 点赞 ·
1 评论 ·
34 收藏

机器学习模型评估的重要指标:精确率、召回率、F1Score

精准率、召回率分类准确度混淆矩阵精准率&召回率为什么精准率召回率优于准确率分类准确度在聊精准率、召回率之前,一般我们会看模型预测的准确率,即所有预测正确样本数/样本总数。但分类准确度不能完全衡量模型好坏。比如一个癌症预测系统,输入体征信息,判断是否有癌症。如果癌症在人类身上发生的概率为0.1%,那模型只要都判断没有癌症,即可达到99.9%的准确率。如果去训练机器学习模型,但是最后准确率有99%,但其实这个模型还是失败的,即使这个模型什么都不做,完全输出无癌症,依然能有99.9%的准确率。
原创
发布博客 2021.01.26 ·
21881 阅读 ·
13 点赞 ·
1 评论 ·
58 收藏

开个机器学习的坑

逻辑回归(一)写在开头回归问题分类问题逻辑回归写在开头作为一个数据工作者,一直对机器学习和建模抱有一定的憧憬和热情,之前算是零零散散自学了一整子,现在决定把之前自己看的东西整理成文字记录下来。一是加深自己的印象,二是如果有志同道合的小伙伴也可以一起学习。作为一个非数据非统计出生的机器学习爱好者,在我的博客中可能会比较少出现一写数据的推导,更多的是对于机器学习和相关概念的理解和使用。回归问题回归问题主要是预测一个数值。比如已知一组样本数据,里面有一个特征“房子的房间数量”,结果是房子的房价。当给出一
原创
发布博客 2021.01.26 ·
201 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏