在计算机视觉领域,YOLOv5是一个广泛使用的目标检测算法。本文将深入解读YOLOv5源码中的验证部分val.py,逐行解释其实现细节和功能。
import argparse
import torch
import yaml
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import check_img_size, non_max_suppression
本文详细解读了YOLOv5目标检测算法的验证部分val.py,从导入依赖到图像预处理、模型推断、后处理,逐行解析了验证过程的实现细节。首先加载模型和数据集,然后进行图像尺寸检查,初始化结果列表。接着,遍历每个图像,进行预处理、模型推断和非极大抑制等操作,最后将处理后的结果存入列表。这有助于理解YOLOv5的验证流程。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



