Redis 之布隆过滤器——java实例

布隆过滤器可以判断某个数据一定不存在,但是无法判断一定存在

方式一:Redission工具

一般我们使用Redisson自带的布隆过滤器

package com.ys.rediscluster.bloomfilter.redisson;
 
import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
 
public class RedissonBloomFilter {
 
    public static void main(String[] args) {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://192.168.14.104:6379");
        config.useSingleServer().setPassword("123");
        //构造Redisson
        RedissonClient redisson = Redisson.create(config);
 
        RBloomFilter<String> bloomFilter = redisson.getBloomFilter("phoneList");
        //初始化布隆过滤器:预计元素为100000000L,误差率为3%
        bloomFilter.tryInit(100000000L,0.03);
        //将号码10086插入到布隆过滤器中
        bloomFilter.add("10086");
 
        //判断下面号码是否在布隆过滤器中
        System.out.println(bloomFilter.contains("123456"));//false
        System.out.println(bloomFilter.contains("10086"));//true
    }
}

 方式二:guava 工具

不用Redis如何来实现布隆过滤器。

guava 工具包相信大家都用过,这是谷歌公司提供的,里面也提供了布隆过滤器的实现。

package com.ys.rediscluster.bloomfilter;
 
import com.google.common.base.Charsets;
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnel;
import com.google.common.hash.Funnels;
 
public class GuavaBloomFilter {
    public static void main(String[] args) {
        BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8),100000,0.01);
 
        bloomFilter.put("10086");
 
        System.out.println(bloomFilter.mightContain("123456"));
        System.out.println(bloomFilter.mightContain("10086"));
    }
}

 


节选自:Redis 之布隆过滤器_wang0112233的博客-CSDN博客_redis布隆过滤器

### Java项目中使用Redis实现布隆过滤器 #### Maven依赖配置 为了在Java端操作Redis中的布隆过滤器,需先加入`redisson`库作为依赖。这可以通过Maven来完成,具体是在项目的pom.xml文件内添加如下片段: ```xml <dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>3.8.2</version> </dependency> ``` 此版本号可能随时间更新而变化,请根据实际需求调整。 #### 初始化Jedis连接并创建布隆过滤器实例 通过Jedis客户端建立到Redis服务器的链接之后,可利用该链接初始化一个名为`RedisBloomFilter`的对象用于后续的操作。下面是一段简单的示例代码展示如何设置预期插入的数量以及错误率参数,并执行基本的数据添加和存在性检测动作[^2]。 ```java import org.redisson.api.RBloomFilter; import org.redisson.api.RedissonClient; import org.redisson.config.Config; public class BloomFilterExample { public static void main(String[] args){ Config config = new Config(); config.useSingleServer().setAddress("redis://127.0.0.1:6379"); RedissonClient redisson = Redisson.create(config); RBloomFilter<String> bloomFilter = redisson.getBloomFilter("myBloomFilter"); // 设置预计插入数量为一百万条记录,允许的最大误差率为千分之三 bloomFilter.tryInit(1_000_000L, 0.003); bloomFilter.add("foo"); bloomFilter.add("bar"); System.out.println(bloomFilter.contains("foo")); // 应输出 true System.out.println(bloomFilter.contains("baz")); // 应输出 false redisson.shutdown(); } } ``` 上述例子展示了怎样基于给定容量与期望误报概率构建布隆过滤器,并向其中增加元素及测试成员资格的方法。 #### 定义服务接口 对于更复杂的应用场景来说,定义专门的服务层接口可能是更好的实践方式之一。这里给出的是一个泛型化的IBloomFilterService接口设计模式的例子,它提供了两个核心方法——`add()`用来往布隆过滤器里新增项;另一个则是`exist()`负责验证特定值是否已经被收录过[^3]。 ```java package org.example.service; /** * 布隆过滤器服务接口. */ public interface IBloomFilterService<T> { /** * 向指定键对应的布隆过滤器中添加数据. * * @param key 键名 * @param data 要存储的数据 */ void add(String key, T data); /** * 检查某个键所关联的布隆过滤器中是否存在某条数据. * * @param key 键名 * @param data 待检验的数据 * @return 若存在返回true,否则false */ boolean exist(String key, T data); } ``` 这种抽象层次的设计有助于提高程序结构清晰度的同时也便于维护和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值