HEERY551
码龄8年
关注
提问 私信
  • 博客:42,910
    42,910
    总访问量
  • 14
    原创
  • 1,695,868
    排名
  • 16
    粉丝
  • 0
    铁粉

个人简介:继续努力,为未来而战!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-06-01
博客简介:

HEERY551的博客

查看详细资料
个人成就
  • 获得42次点赞
  • 内容获得11次评论
  • 获得141次收藏
  • 代码片获得122次分享
创作历程
  • 10篇
    2019年
  • 14篇
    2018年
成就勋章
TA的专栏
  • python网络爬虫
    2篇
  • 正则表达式
    1篇
  • NLP
  • 机器学习理论
    2篇
  • 机器学习算法
  • 零散笔记
    6篇
  • 数据分析
    9篇
  • mysql
    2篇
  • 安装
    1篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SQL-连续记录查询

记录一下一道秋招笔试SQL题目:【主要关于连续记录查询】题目:X市建了一个新的体育馆,每日人流量信息记录在这三列的信息中,序号(id)、日期(visit_date)、人流量(people)。请编写一个查询语句,找到人流量的高峰期。高峰期时,至少连续三行记录中的人流量不少于100人。例如:对于上面的示例数据,输出结果为如下:分析解答:【本文使用mysql】1....
原创
发布博客 2019.09.02 ·
2692 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

假设检验与P值

假设检验的步骤:第1步:确定你要研究的问题是什么。零假设(Ho): 备选假设(H1):第2步:证据是什么?(选取合适的统计量)在零假设成立的前提下,我们从总体中随机抽样得到一个样本。并计算这个样本发生的可能性有多大(P值)。第3步:判断标准是什么?(显著性水平)假设检验常用的判断标准是5%,在假设检验里叫做“显著水平”,用符号α,第4步: 做出结论如果,P值 < α ...
转载
发布博客 2019.08.28 ·
3213 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

python数据结构相关实现【排序、栈、队列、查找】

一、排序【这里介绍冒泡排序、选择排序、快速排序和插入排序】1. 冒泡排序(1)原理解释:冒泡排序,分多轮排序。1)每一轮都是从上层的第一个数开始与其下一个数进行对比,如果大于下一个数就进行交换,下次对比就从上面第二个数【不管之前有无交换】再与其下一个数进行比较,依次比较到最后一个数。【如图 i 的移动变化】2)第一轮比较【j=0】。比较了最底下第二个数和最底下这个数后,即第...
原创
发布博客 2019.08.25 ·
424 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

MySQL与python交互

这里介绍两种连接方法,一种是使用安装的第三方库pymysql【针对python3】进行连接,另外一种是采用pandas里的模块进行连接,个人推荐后者。一、使用pymsql 库进行连接这里使用的【数据库名:test_my 表名:department 字段名为:Id 和 Name】1. 简单连接的小例子 (1). 查找记录。from pymysql impo...
原创
发布博客 2019.08.23 ·
372 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python中 if__name__ == "__main__"的理解

有时候经常看到 python 代码中含有 if __name__ == '__main__' 的代码 ,但是却一直不知道是什么意思,可以通过相应的代码去试验即可知道其作用。一、 理解 我们知道每个python文件既可以被直接执行,则可以作为脚本导入到其他文件中。从而构建各个模块的联系。而 if__name__ == '__main__' 的作用也是用来区分是自己作为自己的文件进...
原创
发布博客 2019.07.05 ·
10127 阅读 ·
31 点赞 ·
4 评论 ·
79 收藏

Markdown语法图文教程

转自:https://blog.csdn.net/u014061630/article/details/81359144目录1. 快捷键2. 基本语法2.1 字体设...
转载
发布博客 2019.05.20 ·
270 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

python使用pip命令安装库缓慢的解决方案

转载自:https://blog.csdn.net/furzoom/article/details/53897318一、问题:经常在使用Python的时候需要安装各种模块,而pip是很强大的模块安装工具,但是由于国外官方pypi经常被墙,导致不可用,所以我们最好是将自己使用的pip源更换一下,这样就能解决被墙导致的装不上库的烦恼。网上有很多可用的源,例如豆瓣:http://pypi....
转载
发布博客 2019.05.10 ·
391 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

win10 使用net start mysql启动mysql,提示发生系统错误 5 拒绝访问

转自:http://www.cnblogs.com/youyouxiaosheng-lh/p/8343408.html出现这样的问题主要是是因为当前用户的操作权限太低了,出了问题出错问题截屏如下:解决问题方法如下:在dos下运行net start mysql 不能启动mysql!提示发生系统错误 5;拒绝访问!切换到管理员模式就可以启动了。所以我们要以管理员身份来运行...
转载
发布博客 2019.05.05 ·
1087 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

win10 系统下的 MySQL 的完全卸载与安装过程

参考:https://blog.csdn.net/weixin_39475172/article/details/81517353 https://www.cnblogs.com/LxyXY/p/7708016.html由于本人的mysql之前出现各种问题,决定重新安装,但是发现重装也出现问题,现在记录一下卸载完全与重装方法,这篇文章主要整合上述两个链接内容,并添加...
原创
发布博客 2019.04.04 ·
816 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

数据规整化:清理、转换、合并、重塑

笔记来源:利用python进行数据分析【Wes Mckinnney著,唐学韬等译】一、合并数据集1、数据库风格的DataFrame合并数据集的合并(merge)和连接(join)运算是通过一个或者多个键进行连接起来的,这是关系型数据库的核心。(1)简单merge合并其中df1数据有多个标记a、b的行,而df2的key列每个值仅对应一行,多对一的合并(2)基于不同列名(键...
原创
发布博客 2019.01.02 ·
808 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

数据规整化:清理、转换、合并、重塑

笔记来源:利用python进行数据分析【Wes Mckinnney著,唐学韬等译】一、合并数据集1、数据库风格的DataFrame合并数据集的合并(merge)和连接(join)运算是通过一个或者多个键进行连接起来的,这是关系型数据库的核心。(1)简单merge合并其中df1数据有多个标记a、b的行,而df2的key列每个值仅对应一行,多对一的合并(2)基于不同列名(键...
原创
发布博客 2019.01.02 ·
808 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pandas 学习笔记二

笔记来源:利用python进行数据分析【Wes Mckinnney著,唐学韬等译】一、汇总和计算描述统计pandas对象拥有一组常用的数学和统计方法,大部分属于约简和汇总统计,用于从Series中提取单个值(如sum、mean)或从DataFrame的行或列中提取一个Series.1、相关示例(1) 常用约简方法(sum()、mean()等)约简方法的常见选项:选项 ...
原创
发布博客 2018.12.29 ·
418 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pandas 学习笔记一

笔记来源:利用python进行数据分析【Wes Mckinnney著,唐学韬等译】 一、pandas的数据结构介绍【主要包括Series、DataFrame】介绍:pandas名称为panel data(面板数据),其基于NumPy构建的1、Series(1)简单构建Series是一种类似于一维数组的对象,有一组数据(可为NumPy数据类型)及一组与之相关的数据标签(索引)...
原创
发布博客 2018.12.28 ·
417 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

NumPy 学习笔记三

笔记来源:利用python进行数据分析【Wes Mckinnney著,唐学韬等译】一、ndarray:一种多维数组对象1、创建ndarray创建数组最简单的方法就是使用array()函数,其可接受一切序列型的对象(包括其他数组)(1)列表形式转换(2)创建指定长度或形状的全0和全1数组其中全0获取全1的一维数组只需要一层括号,二维及以上使用两层括号。np.ones(...
原创
发布博客 2018.12.24 ·
482 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

NumPy 学习笔记二

笔记来源:python数据分析【Ivan Idris著, 韩波译】一、用NumPy进行线性代数运算【numpy.linalg包】1、用NumPy求矩阵的逆(1) 创建一个矩阵【np.mat()函数】(2) 求矩阵的逆【np.linalg.inv()函数】(3) 乘法检验相乘结果发现,得到的是一个单位矩阵,但是还存在一些小误差,要获取误差,可如下操作2、用...
原创
发布博客 2018.12.24 ·
491 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NumPy 学习笔记一

笔记来源:python数据分析【Ivan Idris著, 韩波译】一、NumPy数组对象NumPy中的多维数组称为ndarray,其主要有两个部分组成1.数据本身2.描述数据的元数据在数组的处理过程中,原始信息不受影响,变化只是元数据而已np.arange()函数可以产生数组,主要用来存放一组数值的一维数组,而ndarray则可以产生具有一个及以上的维度.向量(一维Nu...
原创
发布博客 2018.12.21 ·
368 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Ubuntu18.04更换国内源

Ubuntu18.04更换国内源转:https://blog.csdn.net/Dolphinsz/article/details/81217424Ubuntu本身的源使用的是国内的源,下载速度比较慢,不像CentOS一样yum安装的时候对镜像站点进项选择, 所以选择了更换成国内的源。 以下内容整合自网络 一、备份/etc/apt/sources.list文件sudo c...
转载
发布博客 2018.11.11 ·
5001 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

jupyter notebook 快捷键

转自:https://blog.csdn.net/ydmichelle/article/details/78069280        :https://blog.csdn.net/qq_35423500/article/details/79565146一、Jupyter的各种快捷键 执行当前cell,并自动跳到下一个cell:Shift Enter 执行当前cell,执行...
转载
发布博客 2018.08.21 ·
704 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SVM----支持向量机算法理解【转】

【转自]:  https://blog.csdn.net/alwaystry/article/details/60957096前言    动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述...
转载
发布博客 2018.07.21 ·
469 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

统计学习方法之_kd_tree算法理解

k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构。主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。应用背景  SIFT算法中做特征点匹配的时候就会利用到k-d树。而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题。针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种。...
转载
发布博客 2018.05.22 ·
419 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多