练习:人类动作识别,癌症预测,预测年收入是否大于50K美元
人类动作识

导入数据
X_train = np.load('./动作分析/x_train.npy')
X_test = np.load('./动作分析/x_test.npy')
y_train = np.load('./动作分析/y_train.npy')
y_test = np.load('./动作分析/y_test.npy')
获取数据
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)

预测
y_ = knn.predict(X_test)
查看100个预测结果
y_[:100]

查看测试数据和测试结果得分
knn.score(X_test, y_test)

绘制
label = {1:'步行', 2:'上楼', 3:'下楼',4:'坐着', 5:'站立', 6:'躺着'}
解决中文警告问题
plt.rcParams['font.family']='SimHei' #黑体
可视化展示预测结果
# 6行4列
plt.figure(figsize=(4* 4.5,6* 5.5))
# 绘图
for i in range(24):
axes = plt.subplot(6,4,i+1)
axes.plot(X_test[i*100])
# 如果预测结果不对,粗体标红
if y_test[i*100] != y_[i*100]:
axes.set_title('True:%s\nPredict:%s' % (label[y_test[i*100]], label[y_[i*100]]), fontdict=dict(fontsize=(20), color='r'

最低0.47元/天 解锁文章

2011

被折叠的 条评论
为什么被折叠?



