【数据分析day08】人类动作识别,癌症预测,预测年收入是否大于50K美元

练习:人类动作识别,癌症预测,预测年收入是否大于50K美元

人类动作识

在这里插入图片描述
导入数据

X_train = np.load('./动作分析/x_train.npy')
X_test = np.load('./动作分析/x_test.npy')

y_train = np.load('./动作分析/y_train.npy')
y_test = np.load('./动作分析/y_test.npy')

获取数据

knn = KNeighborsClassifier()
knn.fit(X_train, y_train)

在这里插入图片描述
预测

y_ = knn.predict(X_test)

查看100个预测结果

y_[:100]

在这里插入图片描述
查看测试数据和测试结果得分

knn.score(X_test, y_test)

在这里插入图片描述
绘制

label = {1:'步行', 2:'上楼', 3:'下楼',4:'坐着', 5:'站立', 6:'躺着'}

解决中文警告问题

plt.rcParams['font.family']='SimHei'   #黑体

可视化展示预测结果

# 6行4列
plt.figure(figsize=(4* 4.5,6* 5.5))

# 绘图
for i in range(24):
	axes = plt.subplot(6,4,i+1)
	axes.plot(X_test[i*100])
	
	# 如果预测结果不对,粗体标红
	if y_test[i*100] != y_[i*100]:
    	axes.set_title('True:%s\nPredict:%s' % (label[y_test[i*100]], label[y_[i*100]]), fontdict=dict(fontsize=(20), color='r'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值