1. 技术背景介绍
Azure Container Apps 动态会话(Dynamic Sessions for Azure Container Apps)为运行 Python 代码解释器提供了一个安全且可扩展的方式。通过使用 Hyper-V 隔离的沙盒环境,它允许我们安全地运行可能不可信的代码,同时保护主系统免受潜在安全风险的侵害。
动态会话内置了许多流行的 Python 数据科学和机器学习库,包括 NumPy
、pandas
和 scikit-learn
等,非常适合处理数据分析及模型开发的任务。如果你需要一个支持动态代码执行的安全环境,动态会话将是一个理想的选择。
更多信息:请参考官方文档 Azure Container App Sessions。
2. 核心原理解析
- 动态沙盒环境:每个会话运行在 Hyper-V 隔离的容器中,为代码执行提供安全保障。
- 自动化工具支持:官方提供了
SessionsPythonREPLTool
,可直接与 Azure 会话池交互,动态执行 Python 代码。 - 数据上传与结果可视化:支持将本地数据上传到会话中,并处理图片、JSON 等各种数据格式的结果。
3. 代码实现演示
以下我们分步实现一次动态会话的使用场景,包括环境安装、代码执行、数据上传以及结果处理。
3.1 环境准备
-
安装相关 Python 软件包:
pip install -qU langchain-azure-dynamic-sessions langchain-openai langchainhub langchain langchain-community
-
在 Azure CLI 中登录以进行身份认证:
az login
-
创建并配置动态会话池,获取会话池管理端点(
POOL_MANAGEMENT_ENDPOINT
)。
注意:你需要按照 Azure 动态会话池配置文档 的步骤完成会话池的创建。
3.2 基本代码交互
以下是如何通过 Python 使用 SessionsPythonREPLTool
动态执行代码的示例。
import getpass
from langchain_azure_dynamic_sessions import SessionsPythonREPLTool
# 输入会话池管理端点
POOL_MANAGEMENT_ENDPOINT = getpass.getpass(prompt="Enter Pool Management Endpoint: ")
tool = SessionsPythonREPLTool(pool_management_endpoint=POOL_MANAGEMENT_ENDPOINT)
# 执行简单的代码
result = tool.invoke("6 * 7")
print(result)
执行结果:
{
"result": 42,
"stdout": "",
"stderr": ""
}
invoke
返回的结果是一个 JSON,其中包含执行结果 result
、标准输出 stdout
和标准错误输出 stderr
。如果需要原始数据字典,可使用 execute()
方法。
3.3 数据上传与分析
我们可以将本地数据上传到动态会话的沙盒环境中,并对数据进行处理。
import io
import json
# 准备数据
data = {"important_data": [1, 10, -1541]}
binary_io = io.BytesIO(json.dumps(data).encode("ascii"))
# 上传数据文件
upload_metadata = tool.upload_file(data=binary_io, remote_file_path="important_data.json")
# 在动态会话中加载数据并处理
code = f"""
import json
with open("{upload_metadata.full_path}") as f:
data = json.load(f)
result = sum(data['important_data'])
"""
execute_result = tool.execute(code)
print(execute_result)
执行结果:
{
"$id": "2",
"status": "Success",
"stdout": "",
"stderr": "",
"result": -1530,
"executionTimeInMilliseconds": 12
}
此示例中,我们上传了一个 JSON 数据文件,并在沙盒环境中计算了数据的总和。
3.4 处理图片结果
动态会话还可以生成图片结果(如 Matplotlib 图表)。以下是一个简单的绘图示例。
import numpy as np
import matplotlib.pyplot as plt
code = """
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-1, 1, 400)
y = np.sin(x)
plt.plot(x, y)
plt.title('Plot of sin(x)')
plt.grid(True)
plt.savefig('/mnt/data/sin_plot.png')
"""
result = tool.execute(code)
# 检查结果是否为图片
if result["result"]["type"] == "image":
# 解码并显示图片
import base64
from PIL import Image
import io
base64_str = result["result"]["base64_data"]
img = Image.open(io.BytesIO(base64.b64decode(base64_str)))
img.show()
以上代码将在动态会话中生成并返回图片,同时通过本地 PIL 库显示结果。
3.5 集成到智能代理
通过 LangChain 的动态会话工具,我们可以将其集成到智能代理中,增强交互逻辑。
from langchain import hub
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o", temperature=0)
agent_prompt = hub.pull("hwchase17/openai-functions-agent")
agent = create_tool_calling_agent(llm, [tool], agent_prompt)
agent_executor = AgentExecutor(agent=agent, tools=[tool], verbose=True)
# 执行复杂指令
response = agent_executor.invoke(
{"input": "Calculate sin(pi). If negative, generate a random number in [0, 5]."}
)
print(response)
4. 应用场景分析
- 数据安全执行:动态会话提供隔离环境,适合运行不可信代码或敏感分析任务。
- 自动化交互:集成智能代理工具后,可轻松处理复杂指令,适合企业级应用。
- 数据科学:内置流行数据与机器学习库,提升分析效率。
5. 实践建议
- 安全优先:确保为动态会话分配最小权限的身份验证凭据。
- 性能优化:优化代码逻辑,以减少沙盒资源消耗。
- 日志监控:记录每次会话的执行过程,用于审计和调试。
如果遇到问题欢迎在评论区交流。