在这篇文章中,我们将介绍如何直接加载LangSmith的LLM运行数据,并基于这些数据微调一个模型。这个过程相对简单,并且由三个步骤组成:
- 选择要用于训练的LLM运行。
- 使用
LangSmithRunChatLoader
将运行数据加载为聊天会话。 - 微调您的模型。
完成这些步骤后,您可以在LangChain应用中使用微调后的模型。
安装前提条件
在深入了解之前,请确保您已安装langchain >= 0.0.311
版本,并配置环境以使用您的LangSmith API密钥。
%pip install --upgrade --quiet langchain langchain-openai
设置您的环境变量:
import os
import uuid
uid = uuid.uuid4().hex[:6]
project_name = f"Run Fine-tuning Walkthrough {uid}"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY"
os.environ["LANGCHAIN_PROJECT"] = project_name
1. 选择运行
第一步是选择要用于微调的运行数据,通常会选择那些在用户反馈中表现良好的LLM运行。以下代码生成了一些示例运行数据,供您使用。
from enum import Enum
from langchain_core.pydantic_v1 import BaseModel, Field
class Operation(Enum):
add = "+"
subtract = "-"
multiply = "*"
divide = "/"
class Calculator(BaseModel):
"""A calculator function"""
num1: float
num2: float
operation: Operation = Field(..., description="+,-,*,/")
def calculate(self):
if self.operation == Operation.add:
return self.num1 + self.num2
elif self.operation == Operation.subtract:
return self.num1 - self.num2
elif self.operation == Operation.multiply:
return self.num1 * self.num2
elif self.operation == Operation.divide:
if self.num2 != 0:
return self.num1 / self.num2
else:
return "Cannot divide by zero"
from pprint import pprint
from langchain_core.utils.function_calling import convert_pydantic_to_openai_function
openai_function_def = convert_pydantic_to_openai_function(Calculator)
pprint(openai_function_def)
在上面的代码中,我们定义了一个简单的计算器函数,并将其转换为OpenAI功能定义。
2. 准备数据
接下来,我们创建一个LangSmithRunChatLoader
实例,并使用其lazy_load()
方法加载聊天会话。
from langchain_community.chat_loaders.langsmith import LangSmithRunChatLoader
loader = LangSmithRunChatLoader(runs=llm_runs)
chat_sessions = loader.lazy_load()
将加载后的聊天会话转换为适合微调的格式:
from langchain_community.adapters.openai import convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(chat_sessions)
3. 微调模型
使用OpenAI库启动微调过程:
import json
import time
from io import BytesIO
import openai
my_file = BytesIO()
for dialog in training_data:
my_file.write((json.dumps({"messages": dialog}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
# 等待微调完成
status = openai.fine_tuning.jobs.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.fine_tuning.jobs.retrieve(job.id).status
# 微调完成
微调完成后,您可以使用结果模型 ID 与ChatOpenAI
模型类结合在LangChain应用中。
# 获取微调后的模型ID
job = openai.fine_tuning.jobs.retrieve(job.id)
model_id = job.fine_tuned_model
# 在LangChain中使用微调后的模型
from langchain_openai import ChatOpenAI
model = ChatOpenAI(
model=model_id,
temperature=1,
)
(prompt | model).invoke({"input": "What's 56/7?"})
恭喜您!您已成功使用LangSmith LLM运行数据微调了一个模型。如果遇到问题欢迎在评论区交流。
—END—