深入解析SAP HANA Cloud Vector Engine及实战应用

欢迎来到本篇文章,我们将深入探讨SAP HANA Cloud中的向量引擎(Vector Engine),并通过示例代码演示如何利用其强大的功能进行自查询。本文将分为五个部分:技术背景介绍、核心原理解析、代码实现演示、应用场景分析以及实践建议。

技术背景介绍

SAP HANA Cloud作为一款高性能的内存数据库,现在支持向量存储。向量引擎的引入使得SAP HANA能够高效地处理和查询嵌入式数据,特别是在自然语言处理(NLP)和机器学习相关的应用中大幅提升了处理效率。这种技术的核心是通过存储文档向量化后的结果,允许快速查询相似性和进行复杂数据分析。

核心原理解析

向量存储的关键在于高效地将文本数据转化为数值向量,并存储于数据库中。这使得我们可以利用数据库查询优化功能,快速找到与输入查询相似或匹配的文档。结合OpenAI的嵌入模型,可以实现高效的语义搜索和数据分析。

代码实现演示

以下代码展示了如何在SAP HANA Cloud中搭建一个自查询系统。

import os
from hdbcli import dbapi
from langchain_community.vectorstores.hanavector import HanaDB
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_community.query_constructors.hanavector import HanaTranslator
from langchain_openai import ChatOpenAI

# 连接SAP HANA数据库
connection = dbapi.connect(
    address=os.environ.get("HANA_DB_ADDRESS"),
    port=os.environ.get("HANA_DB_PORT"),
    user=os.environ.get("HANA_DB_USER"),
    password=os.environ.get("HANA_DB_PASSWORD"),
    autocommit=True,
    sslValidateCertificate=False,
)

# 创建表存储向量和元数据
cur = connection.cursor()
cur.execute("DROP TABLE LANGCHAIN_DEMO_SELF_QUERY", ignoreErrors=True)
cur.execute(
    """
    CREATE TABLE "LANGCHAIN_DEMO_SELF_QUERY"  (
    "name" NVARCHAR(100), "is_active" BOOLEAN, "id" INTEGER, "height" DOUBLE,
    "VEC_TEXT" NCLOB, 
    "VEC_META" NCLOB, 
    "VEC_VECTOR" REAL_VECTOR
    )
    """
)

# 准备文档并存入HANA
embeddings = OpenAIEmbeddings()
docs = [
    Document(page_content="First", metadata={"name": "adam", "is_active": True, "id": 1, "height": 10.0}),
    Document(page_content="Second", metadata={"name": "bob", "is_active": False, "id": 2, "height": 5.7}),
    Document(page_content="Third", metadata={"name": "jane", "is_active": True, "id": 3, "height": 2.4}),
]
db = HanaDB(connection=connection, embedding=embeddings, table_name="LANGCHAIN_DEMO_SELF_QUERY", specific_metadata_columns=["name", "is_active", "id", "height"])
db.delete(filter={})
db.add_documents(docs)

# 构建自查询检索器
llm = ChatOpenAI(model="gpt-3.5-turbo")
metadata_field_info = [
    AttributeInfo(name="name", description="The name of the person", type="string"),
    AttributeInfo(name="is_active", description="Whether the person is active", type="boolean"),
    AttributeInfo(name="id", description="The ID of the person", type="integer"),
    AttributeInfo(name="height", description="The height of the person", type="float"),
]
document_content_description = "A collection of persons"
hana_translator = HanaTranslator()
retriever = SelfQueryRetriever.from_llm(llm, db, document_content_description, metadata_field_info, structured_query_translator=hana_translator)

# 进行查询
query_prompt = "Which person is not active?"
docs = retriever.invoke(input=query_prompt)
for doc in docs:
    print("-" * 80)
    print(doc.page_content, " ", doc.metadata)

代码说明:

  • 连接SAP HANA数据库:使用hdbcli库,通过环境变量安全地获取连接参数。
  • 表结构创建:利用SQL语句创建一个存储向量及其元数据的表。
  • 文档插入:使用OpenAIEmbeddings生成文档嵌入,并存入表中。
  • 自查询实现:利用SelfQueryRetriever从文档集中支持语义查询。

应用场景分析

SAP HANA Cloud Vector Engine在许多场景中表现卓越,如企业文档检索、客户服务自动化、个性化推荐系统等。它通过结合语义理解与传统数据库的强大能力,能够低延迟地提供精确的查询结果。

实践建议

  • 环境配置:确保环境变量正确配置,以避免连接失败。
  • 表结构调整:根据实际应用需求,可能需要调整表内字段及类型。
  • 性能优化:在大规模数据集下,注意数据库的索引和查询优化。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值