欧拉函数

本文介绍了欧拉函数的概念,它表示小于n且与n互质的正整数个数。给出了欧拉函数的通式,并分享了单个欧拉函数的计算代码以及线性筛(欧拉筛)的预处理代码。通过一道例题解释了如何使用欧拉函数和线性筛解决求特定条件下数的和的最小值问题。
摘要由CSDN通过智能技术生成
欧拉函数:

就是对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。

欧拉函数的通式:φ(n)=n*(1-1/p1)(1-1/p2)(1-1/p3)*(1-1/p4)……(1-1/pn)

其中p1, p2…pn为n的所有质因数。φ(1)=1(唯一和1互质的数就是1本身)。
我也不知道通式怎么来的,记住吧。

单个欧拉函数代码
ll oula(ll n){
    ll ans = n;
    for(int i=2; i*i <= n; ++i)
    {
        if(n%i == 0)
        {
            ans = ans/i*(i-1);
            while(n%i == 0)
                n/=i;
        }
    }
    if(n > 1) ans = ans/n*(n-1);
    return ans;
}
线性筛(欧拉筛)预处理代码
int prim[maxn];		//存第i个素数
int ans[maxn];		//存欧拉函数值
int vis[maxn];		//标记素数
int cnt;	//素数个数
void oula(){
	ans[1] = 1;
	cnt = 1;
	for(int i = 2; i < maxn; i ++){
		if(vis[i]==0){	//没被标记过,素数
			prim[cnt++] = i;	
			ans[i] = i-1;	//素数的欧拉函数值=i-1
		}
		for(int j = 1; j < cnt && prim[j]*i < maxn; j ++){
			vis[i*prim[j]] = 1;	//把合数标记掉
			if(i%prim[j]==0){	
				ans[i*prim[j]] = ans[i]*prim[j]; //保证每个合数只会被他的最小之质因子筛去
				break; //经典欧拉筛的核心语句,这样能保证每个数只会被自己最小的因子筛掉一次
			}else ans[i*prim[j]] = ans[i]*ans[prim[j]];	//积性函数性质
		}
	}
}
例题 链接: link.
题意:输入n表示有n个数,对于每个数m,求出一个数(该数的欧拉函数值大于等于m),求这些数之和的最小值。
思路:用欧拉筛预处理1~1e6的欧拉函数值。根据性质:一个数的欧拉函数值肯定小于这个数,所以只要从每个输入数m的欧拉函数值开始往后遍历,直到找到一个数i的欧拉函数值大于等于输入数m,就把sum+=i即可。
代码
#include <iostream>
#include <cstdio>
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define pb push_back
#define T int T;scanf("%d",&T);while(T--)
const ll mod=1e9+7;
const int maxn = 1e6 + 100;
int prim[maxn];
int ans[maxn];
int vis[maxn];
int cnt;
void oula(){
	ans[1] = 1;
	cnt = 1;
	for(int i = 2; i < maxn; i ++){
		if(vis[i]==0){
			prim[cnt++] = i;
			ans[i] = i-1;
		}
		for(int j = 1; j < cnt && prim[j]*i < maxn; j ++){
			vis[i*prim[j]] = 1;
			if(i%prim[j]==0){
				ans[i*prim[j]] = ans[i]*prim[j];
				break;
			}else ans[i*prim[j]] = ans[i]*ans[prim[j]];
		}
	}
}
int main(){
	oula();
	int tt = 1;
	T{
		int n;
		scanf("%d", &n);
		ll sum = 0;
		for(int i = 1; i <= n; i ++){
			int p;
			scanf("%d", &p);
			for(int j = p+1; j < maxn; j ++){	//一个数的欧拉函数值肯定小于这个数
				if(ans[j]>=p){
					sum += j; 
					break;
				}
			}
		}
		printf("Case %d: %lld Xukha\n", tt++, sum);
	}

    return 0;
}
/*


*/

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值