题目描述
在一个M*N的魔术棋盘中,每个格子中均有一个整数,当棋子走进这个格子中,则此棋子上的数会被乘以此格子中的数。一个棋子从左上角走到右下角,只能向右或向下行动,请问此棋子走到右下角后,模(mod)K可以为几?
如以下2*3棋盘:
3 4 4
5 6 6
棋子初始数为1,开始从左上角进入棋盘,走到右下角,上图中,最后棋子上的数可能为288,432或540。所以当K = 5时,可求得最后的结果为:0,2,3。
输入输出格式
输入格式:
输入文件magic.in第一行为三个数,分别为M,N,K (1 ≤ M,N,K ≤ 100)以下M行,每行N个数,分别为此方阵中的数。
输出格式:
输出文件magic.out第一行为可能的结果个数
第二行为所有可能的结果(按升序输出)
输入输出样例
输入样例#1: 复制
Magic.in
2 3 5
3 4 4
5 6 6
输出样例#1: 复制
3
0 2 3
思路:dp
f[i][j][k]表示到i,j时,模数可否为k。
正确性可以由 (a*b)%mod=(a%mod)*(b%mod)得到。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int n,m,mod,ans; int map[101][101]; int f[101][101][101]; int main(){ scanf("%d%d%d",&n,&m,&mod); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&map[i][j]); f[1][1][map[1][1]%mod]=1; for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) for(int k=0;k<mod;k++){ if(f[i-1][j][k]) f[i][j][k*map[i][j]%mod]=1; if(f[i][j-1][k]) f[i][j][k*map[i][j]%mod]=1; } for(int i=0;i<mod;i++) if(f[n][m][i]) ans++; cout<<ans<<endl; for(int i=0;i<mod;i++) if(f[n][m][i]) cout<<i<<" "; }