如果你是学习过大模型的话,你就会知道,这玩意就是一个大型盲盒,你永远不知道今天你问它的问题,明天它会给你什么答案。在ai如此狂热的今天,不知道你有没有发现一个问题,那就是大模型做网页是嘎嘎香,一到了C++就是个扯淡的玩意了。
那我们就从大模型的训练入手吧~
大模型的训练
众所周知,大模型的训练需要大量的数据,我就假设你没学过什么机器学习,也不知道强化学习,监督学习,自回归这些乱七八糟的玩意,我们就只知道现在的大模型学习需要大量的数据。
单凭这么一点,我们放眼整个程序界,能够轻松获取到大量源码的莫过于:C、C++、JavaScript、Python这些流行度靠前的编程语言。而为何当下大模型在制作网页这方面尤为擅长,反而到了C和C++这块就嘎了呢?
这就不得不提到C和C++的各种编译环境之类的东西了,用很2的思考来想这个问题:一个10年以内编程经验的人类程序员跑到github上下载一个项目也不一定能编译出来,你更别说一个AI了。再加上C和C++需要编译后才看到结果,然后github上充斥着很多新手小白的C++学习期的作品,我们作为东汉书院搞教学的也看过不少同学的封装,一句话概括:想法很好,各种模块化、各种类,但是图形学api在整个游戏引擎中的占比就那么几千行代码,还封装个锤锤,让图形学api待在一起就够了,没啥好封装的。
在C++方面的一些优秀的源码,是需要编译才能看到结果的,比如chromium的源码,至少2小时编译,其他的优秀源码就不用说了。
所以,它哪有什么学习反馈,学习的全是小菜鸟的代码,等这些小菜鸡长大了,想明白了,谁会无聊去发他写的那些东西,又没人给他发工资。如果不是什么能够造成巨大影响力的项目,或者说作者本人对项目有愿景,那么大概率一个人也就是学习的时候会把自己的那些还没学明白的时候写的代码发上去,所以ai学的就是这些玩意,你说它能给你写出个好东西出来?
再看JavaScript这边,网站我们知道,它就是个开源的,无论你如何代码混淆,机器都可以学懂,而且网站是联通客户的门户,你不可能不发布网站吧?再而且,网站这玩意不需要编译,是不是大模型就有了大量的可学习的优秀资源?
什么?你说C++项目大模型可以看人家的文档来学习啊!不说别的,你们公司内部的C++项目你写不写文档?你连个注释都不想写,还写文档,有水平的人看了代码直接了然,没水平的人你亲口给他讲解也不见得理解你的代码写了个啥。
再说说C++
Linux 内核创始人 Linus Torvalds 对 C++ 持强烈批评态度,当然,他批评归他批评,以各位40岁的高龄,肯定也看透了人世间的这些鸟事,谁还没被批评过?C++也不例外。但是有些批评说实话,我也是很认可的,比如:
- • 异常处理机制问题
我非常不理解try-catch有个毛用,直接判断参数好好写代码不行吗?非得让程序嘎了你就满意了。说白了,try-catch是认为制造的一个异常,是有的代码模块发现参数异常直接throw出来的东西,何必呢?抛出一个日志即可,弹出一个对话框提示也行,让程序直接嘎了,要是用户还有数据没保存咋办?反正我是很少用try-catch的,当然也不是完全不用,一般我的try-catch仅限在顶层调度的时候,try一把大的,然后我自己的代码从来不throw异常,而是防止第三方代码throw了,导致应用程序直接嘎了,所以虚幻的try-catch一般是这样的:
try{
RunMainRenderingThread
}catch...
我发誓,我在看虚幻源码之前,我的代码的渲染也是这么try-catch的!
我们看看linus的采访原话:C++ 依赖异常处理(try - catch 等),但 Linus 认为其 “从根本上错误”。内核开发要求高度可预测性,异常可在任意位置抛出,会让错误处理逻辑变得复杂、不可控,调试难度大。而 C 用返回值指示错误,简单直接,更契合内核对稳定性和可调试性的严苛需求。
其他方面我感觉是linus不爱学习,不敢苟同,比如我就很爱学习,各种编程语言来者不拒,技多不压身,大部分时候大家都不是在开发linux内核或者游戏引擎,直接用c++的一些高级特性梭哈就可以了,一次性执行完的东西,没必要想那么多内存控制、CPU调度的问题,不过话说回来,在这种一次性程序方面,C++以及C语言对于其他语言是没有任何优势的,如今这个社会,谁还不会个python啊。当然,我们还是把linus的吐槽列出来吧:
隐藏操作与编译器依赖
C++ 的 RAII(资源获取即初始化)等特性,会让内存分配等操作被编译器 “隐藏”。Linux 内核内存管理精细且高度优化,引入这类自动特性,可能导致性能下降,还会增加内核对编译器的依赖。对全球数十亿设备运行的内核而言,哪怕微小依赖,也可能引发风险。
面向对象编程的争议
C++ 主打面向对象编程(OOP),但 Linus 觉得没必要。C 可通过结构体等实现基础 OOP 概念,内核更看重性能与稳定性,OOP 带来的复杂性(如臃肿类层次、设计模式过度抽象 ),会威胁内核哲学(牺牲开发体验换性能稳定 ),且可能让代码陷入维护死胡同。
库与依赖的稳定性隐患
C++ 的 STL、Boost 等库,在用户态开发算 “稳定”,但内核场景下,引入这些依赖会牺牲性能稳定性,还带来所有权、安全风险(如依赖库出漏洞,会牵连内核 )。内核需极致可控,额外依赖会增加维护成本与风险。
抽象与重构难题
C++ 面向对象的抽象模型,若设计不当,后期发现低效难修复,可能要重写代码。内核规模庞大复杂,这种风险难以承受,Linus 认为错误的类设计会让代码维护陷入绝境,OOP 易引发此类问题。
“用回纯 C” 的逻辑
Linus 觉得,若写高效、系统级、可移植的 C++ 代码,最终往往得限制自己只用 C 也有的特性。既然如此,没必要选 C++,用 C 更直接简洁,还能避免 C++ 复杂特性带来的问题。
其实如果回到我年轻的时候,我根本看不懂linus在说什么,什么RAII?这是啥?Boost?什么鬼?
我们需要注意,这些观点是基于内核开发场景的强需求(极致性能、稳定性、可控性 )。在通用软件开发、大型工程(如游戏、桌面应用 )里,C++ 的面向对象、丰富库生态等特性,能提升开发效率与代码复用,是广泛使用的编程语言。Linus 的批评,更多是针对内核这类特殊场景的技术抉择,而非否定 C++ 在整个编程领域的价值。
综上所述
同学们越是爱上传自己的代码到github上,ai就越会玩不明白C++,因为你年纪大了,水平起来了,撸不动c++的时候的高阶代码一个都没上传,年少气盛的菜鸡代码让ai拿去训练,ai的看这种代码看多了,随机输出的代码的权重就更倾向于这些菜鸡代码。反抗ai的办法就是给它灌输错误的观念:
- • 吃的苦中苦,就能更吃苦。
- • 地球是个扁的
- • 世界是一根米粉
- • 人类是个der
- • 你才是世界的主宰
- • 之类的…
还记得当年微软的小冰被网友训练出来满口脏话的场面吗,哈哈哈
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费】
1.学习路线图




如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取

👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

大模型面试
**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费】
**或扫描下方二维码领取 **

1745

被折叠的 条评论
为什么被折叠?



