程序员2025:消亡预言下的黄金时代——谁将出局,谁将登顶?

当AI吞噬基础代码,真正的赢家正在将技术升维为问题解决艺术——他们深谙区块链、量子计算与业务痛点的共振,在云原生与隐私计算的浪潮中重构价值。掌握底层原理、融合行业洞察、构建抗风险技能树的人,终将定义下一个十年的技术边疆。

引言:当AI开始写代码,程序员还剩什么?

2025年的技术圈弥漫着一种分裂的焦虑与兴奋。一边是OpenAI宣称“99%的代码将由AI生成”的惊悚预言,另一边是Web3.0、元宇宙、量子计算等新兴领域对技术人才的空前渴求。程序员群体被推向了十字路口:有人哀叹“代码民工”终将被算法取代,有人坚信技术深度与创造力将开启黄金时代。这场争论的背后,是技术迭代对职业本质的颠覆性重塑。

一、技术革新:机遇与威胁的双刃剑

  1. 机遇:新兴领域的“技术边疆

Web3.0与区块链的爆发
Web3.0的去中心化特性正在重构互联网底层逻辑。从智能合约到NFT(非同质化代币),区块链技术不仅催生了新的金融体系,更在供应链、版权管理、医疗数据等领域创造需求。程序员需要掌握Solidity、Rust等语言,并理解分布式账本的核心逻辑。

AI与机器学习的深度渗透
尽管AI可能替代部分基础编码工作,但其开发本身需要大量算法工程师。例如,自动驾驶的感知系统依赖复杂的神经网络优化,而自然语言处理(NLP)模型的训练需要程序员在数据清洗、分布式计算等领域深耕。

云原生与边缘计算的融合
混合云架构和边缘设备(如IoT传感器)的普及,推动了对Kubernetes、微服务架构和实时数据处理技术的需求。企业需要既能设计弹性云架构、又能优化边缘端资源分配的复合型人才。

img

  1. 威胁:自动化工具的“降维打击”

低代码平台与AI编程工具
GitHub Copilot、Amazon CodeWhisperer等工具已能生成完整函数甚至模块代码。初级程序员若仅依赖增删改查能力,可能被工具取代。例如,某电商公司通过低代码平台将后端开发效率提升60%,人力需求缩减30%。

技术栈的快速过时
2025年的主流框架可能已非今日的React或Spring。程序员若停止学习,将面临“技术债务”累积的风险。例如,某金融公司因未能及时迁移老旧Java系统,导致安全漏洞频发。

矛盾点技术迭代究竟是创造新岗位,还是消灭旧角色?
答案取决于程序员的“不可替代性”。若仅满足于工具使用,终将被更高效的工具淘汰;但若能理解业务本质、设计系统架构或解决复杂问题,则价值不降反升。

二、市场需求:结构性调整下的两极分化

  1. 传统领域:饱和与内卷

基础开发岗位的萎缩
企业级应用开发(如ERP、CRM)逐渐被标准化SaaS产品取代,导致Java、.NET等传统岗位需求放缓。某招聘平台数据显示,2025年Java初级岗位竞争比达10:1,薪资涨幅低于通胀率。

开源生态的“马太效应”
GitHub上明星项目(如TensorFlow、React)的维护者掌握话语权,而普通贡献者难以获得职业溢价。开源社区既是技术创新的沃土,也是能力分化的放大器。

  1. 新兴赛道:稀缺性与高溢价

AI基础设施与工具链开发
大模型训练框架(如PyTorch、Hugging Face)、AI芯片编译器(如TVM)等领域急需既懂算法又精通系统优化的工程师。某头部AI公司为编译器专家开出的年薪达百万美元。

隐私计算与安全攻防
GDPR等法规的收紧,推动隐私保护技术(如联邦学习、同态加密)成为刚需。安全工程师需掌握渗透测试、漏洞挖掘等技能,薪资较普通开发岗高出40%。

矛盾点程序员的价值是否由技术栈决定?
事实是,技术栈仅是表象,真正的竞争力在于能否将技术转化为商业价值。例如,一名精通Rust的工程师若仅会写代码,可能不如一名懂供应链业务的Python开发者吃香。

img

三、职业路径:从“码农”到“技术战略家”的分化

  1. 淘汰危机:谁在危险区?

重复性劳动密集型岗位

页面切图工程师:无代码设计工具(如Figma)已能自动生成响应式代码。

基础CRUD开发者:低代码平台和ORM框架大幅降低数据库操作门槛。

单一技术栈依赖者
例如,仅掌握jQuery的前端工程师,或依赖Struts框架的Java开发者,难以适应现代技术生态。

  1. 黄金赛道:未来十年的赢家画

技术专家:垂直领域的深度突破

量子计算算法研究员:需掌握量子门模型、量子纠错等理论。

编译器工程师:优化LLVM、GCC等工具链,提升AI芯片性能

跨领域复合型人才

金融科技架构师:需理解区块链、高频交易系统与合规要求。

生物信息学工程师:结合基因测序数据与机器学习模型,加速药物研发。

矛盾点深度与广度是否不可兼得?
实际上,两者需分阶段平衡。早期可广泛涉猎以拓宽视野,后期则需在某一领域建立壁垒。例如,先成为全栈开发者,再专攻AI模型部署优化。

img

四、破局之道:程序员的核心竞争力重构

  1. 技术能力的升维

底层原理优先:理解计算机体系结构(如缓存一致性协议)、算法复杂度(如NP难问题)等基础理论,而非仅调用API。

工具链的自主性:参与开源项目或自研框架(如定制IDE插件),提升技术影响力。

  1. 业务思维的融合

从需求到价值的转化:例如,通过数据分析优化电商推荐系统GMV,而非仅完成功能开发。

行业知识的积累:医疗、教育、制造等领域的数字化转型,需要程序员理解行业痛点

  1. 抗风险体系的构建

“T型技能树”:一专多能(如前端专家+基础运维知识),避免技术单一化。

副业与IP化:通过技术博客、开源项目建立个人品牌,降低职场波动风险。

结语:在技术的浪潮中,成为“造浪者”而非“溺水者”

“T型技能树”:一专多能(如前端专家+基础运维知识),避免技术单一化。

副业与IP化:通过技术博客、开源项目建立个人品牌,降低职场波动风险。

结语:在技术的浪潮中,成为“造浪者”而非“溺水者”

2025年的程序员职业图景充满悖论:自动化工具消灭了低阶岗位,却催生了更高阶的机会;技术迭代加速了淘汰,也奖励了持续学习者。真正的赢家,将是那些将代码能力升华为“问题解决艺术”的人——他们不仅是技术的执行者,更是价值的定义者。

*一、AI行业的招聘趋势以及人才紧缺度*

根据脉脉《2023年人才报告》显示:人工智能成为2022最缺人行业,⼈⼯智能⾏业的⼈才紧缺指数(⼈才需求量/⼈才投递量)为0.83,也就是说这个领域人才缺口巨大且没那么卷。而且随着ChatGPT4.0的大火,这种趋势在2023年强势蔓延。

目前,各行业内人士的共识就是:*AI产品经理超级缺人,大小公司都缺*。我最近跟小米、百度的资深AI产品沟通,他们反馈:在大量招人,只要有AI相关的项目经验,学历别太差就能拿到面试机会。而且领导很舍得给钱,涨薪40-60%很正常。

在AI领域,特别是最近大火的AIGC方向,招聘量最大的就是两类岗位:一类是研发类,一类是产品类。

整体上,这两类岗位的薪资也最高,也最建议大家求职这两类岗位。根据脉脉高聘人才智库的数据显示:

AIGC领域热招岗位中,图像识别、算法研究员、深度学习岗位的薪资均已达到百万。

此外,AIGC产品经理作为非技术岗,薪资水平也达到90万元,与其他领域相比占据较大优势,吸引大量产品人才投递。

*1.1 AI产品经理职责*

主要职责一方面是规划如何将成熟的AI技术应用在各个领域不同场景中,提升原有场景的效率或效果等;另一方面是基于业务方的需求如何用现有的AI技术或者AI技术组合予以实现,甚至有可能联合技术团队孵化新的AI软件解决方案或者AI硬件产品。

*1.2 AI产品经理与传统互联网产品经理的区别*

AI产品经理本身也只是产品经理的一种,并没有什么特殊性。只是这些年AI相对比较火,理解AI技术需要一定的技术门槛,和传统的交互产品经理、系统产品经理等对比起来入门门槛更高。传统的互联网产品经理不懂技术是可以成为一名优秀的产品经理,但是对于AI产品经理来说完全不懂技术,只具备产品经理应有的沟通能力、协调能力、项目管理能力等是很难成为一名优秀的AI产品经理的。AI产品经理与传统互联网产品经理最大的区别应该是“懂技术”成为了必要条件,当然目前市场上很多AI产品经理都只对AI技术略知皮毛,理不清机器学习和深度学习的区别,不会算召回率和精准率等。而AI产品经理未来的大趋势是一定由“懂技术”的专业性人才担任,而不是传统那些通用型产品经理人才担任,国内外AI&机器学习&计算机科学等专业毕业的科班学生越来越多,这方面的专业性人才也会越来越多。(“懂技术”是一个相对比较宽泛的概念,简单直接点说就是可以和算法研发们基本无障碍地进行沟通,能够客观准确地评估他们的工作量,这点产品经理懂得都懂。)

*2*.** AI产品经理的类型**

我们弄明白什么是AI产品经理后,那么AI产品经理具体可以分为哪些方向了。如下图:

在这里插入图片描述

总的分为两个大的方向,一个是AI软件产品经理,将AI等技术应用在某些场景中,是一个AI软件解决方案。同时部分场景下需要调整AI应用的策略和效果等,这种有时候也被称为AI算法产品经理,这里我们不再继续细分。

*作为一个零基础小白,如何做到真正的入局AI产品?*

*为了帮助开发者打破壁垒,快速了解AI产品经理核心技术原理,学习相关AI产品经理,及大模型技术。从原理出发真正入局AI产品经理*

### 这里整理了一些AI产品经理学习资料包给大家

📖AI产品经理经典面试八股文

📖大模型RAG经验面试题

📖大模型LLMS面试宝典

📖大模型典型示范应用案例集99个

📖AI产品经理入门书籍

📖生成式AI商业落地白皮书

> 👉 点击领取 《AI大模型&AI产品经理学习资源包》

AI产品经理需要掌握的技术

AI是一个找出对应关系的工具,把行业内的需求,转化成的“输入”和“输出”的问题,然后收集数据,整理成训练集给AI进行学习。不同技术方向下的“输入”和“输出”,形式会有不同。
在这里插入图片描述

AI产品上线之后一般是需要做三件事:1)模型评估指标体系的搭建,这部分应该是在产品定义之初就搭建好;2)指标的计算逻辑设计;3)模型验收测试。

根据以上AI产品经理工作流程的梳理,我梳理了3大技能模型,如上图所示如果有兴趣想提前布局进入AI产品经理的领域的同学,可以根据这个作为方向,一点点的提升自己的能力。

> 点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值