【LibreOJ #6053】简单的函数

Description

某一天,你发现了一个神奇的函数f(x),它满足很多神奇的性质:
1. f(1)=1
2. f(pc)=pc(⊕表示异或)
3. f(ab)=f(a)f(b)(ab互质)

你看到这个函数之后十分高兴,于是就想要求出i=1nf(i)

由于这个数比较大,你只需要输出 i=1nf(i)mod(109+7)

Solution

Min_25版子题
【数论】Min_25筛

Code

代码中包含递归和非递归版本,注释中的均为递归版本,非注释中的是非递归版本
全部改非递归的后更慢了???懵

#include <cstdio>
#include <algorithm>
#include <cmath>
#define fo(i,a,b) for(int i=a;i<=b;++i)
#define fod(i,a,b) for(int i=a;i>=b;--i)
#define min(q,w) ((q)>(w)?(w):(q))
#define max(q,w) ((q)<(w)?(w):(q))
#define GALL(q) ((1LL+(q))*(LL)(q)/2%mo)
using namespace std;
typedef long long LL;
const int N=200500,mo=1000000007;
int read(int &n)
{
    char ch=' ';int q=0,w=1;
    for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
    if(ch=='-')w=-1,ch=getchar();
    for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
LL n,ans;
int M;
bool prz[N];
int pr[N/3];
int prs[N],prc[N],ps[N];
void Pre(int n)
{
    fo(i,2,n)
    {
        if(!prz[i])pr[++pr[0]]=i,prs[i]=i,prc[i]=1,ps[pr[0]]=(ps[pr[0]-1]+i)%mo;
        ((prs[i]+=prs[i-1])>=mo?prs[i]-=mo:0);
        prc[i]+=prc[i-1];
        fo(j,1,pr[0])
        {
            int t=i*pr[j];
            if(t>n)break;
            prz[t]=1;
            if(i%pr[j]==0)break;
        }
    }
}
/*LL Gf(LL n,int m)
{
    if(!m)return GALL(n)-1;
    if(n<=N&&n<(LL)pr[m+1]*pr[m+1])return f[n];
    for(;n<(LL)pr[m+1]*pr[m+1];--m);
    LL ans=GALL(n)-1;
    for(;m;--m)ans=(ans-(Gf(n/pr[m],m-1)-f[pr[m]-1])*pr[m])%mo;
    return ans;
}*/
LL d[N];
int dz1[N],dz[N];
int f[N],f0[N];
LL Gf(LL n)
{
    for(LL i=1,nx;i<=n;i=nx+1)
    {
        nx=n/(n/i);
        LL t=d[++d[0]]=n/i;
        f0[d[0]]=(t-1)%mo;
        f[d[0]]=(((t&1)?((t+1LL)/2%mo*(t%mo)):(t/2%mo*(t%mo+1LL)))-1LL)%mo;
        if(t<=N)dz[t]=d[0];
        else dz1[n/t]=d[0];
    }
    fo(j,1,pr[0]-1)
    {
        LL pf=(LL)pr[j]*pr[j];
        for(int i=1;i<=d[0]&&pf<=d[i];++i)
        {
            int q=(d[i]/pr[j]<=N)?dz[d[i]/pr[j]]:dz1[n/(d[i]/pr[j])];
            f[i]=(f[i]-((LL)f[q]-prs[pr[j]-1])%mo*(LL)pr[j])%mo;
            f0[i]=(f0[i]-((LL)f0[q]-prc[pr[j]-1]))%mo;
        }
    }
    return f[1]-f0[1];
}
/*LL Gg(LL n,int m)
{
    if(n<2||n<pr[m])return 0;
    LL ans=((n<=N)?(f[dz[n]]-f0[dz[n]]):(f[dz1[(::n)/n]]-f0[dz1[(::n)/n]]))%mo;
    ans=(ans-(LL)ps[m-1]+(LL)m-1LL)%mo;
    for(;(LL)pr[m]*pr[m]<=n;++m)
    {
        LL p=pr[m],p1=(LL)pr[m]*pr[m];
        for(LL k=1;p1<=n;p=p1,p1*=(LL)pr[m],++k)
            ans=(ans+Gg(n/p,m+1)*(LL)(pr[m]^k)%mo+(LL)(pr[m]^(k+1)))%mo;
    }
    return ans;
}*/
int g[N];
LL Gg(LL n)
{
    fod(j,pr[0]-1,1)    
    {
        for(int i=1;(LL)pr[j]*pr[j]<=d[i];++i)
        {
            LL p=pr[j],p1=(LL)pr[j]*pr[j];
            for(int k=1;p1<=d[i];p=p1,p1*=(LL)pr[j],++k)
            {
                LL w=d[i]/p;
                int q=(w<=N)?dz[w]:dz1[n/(w)];
                LL t=g[q];
                if(w>=pr[j+1])t=(t+(f[q]-f0[q])-ps[j]+(LL)j)%mo;
                g[i]=(g[i]+t*(pr[j]^k)+(pr[j]^(k+1)))%mo;
            }
        }
    }
    return (g[1]+(f[1]-f0[1]))%mo;
}
int main()
{
    int q,w;
    scanf("%lld",&n);
    if(n==1)return printf("1\n"),0;
    M=2LL*sqrt(n);
    Pre(M);
    Gf(n);
    printf("%lld\n",(Gg(n)+3LL+mo)%mo);
    return 0;
}
阅读更多
版权声明:本文为蒟蒻所写,神犇转载尽情拍打喂食虐待,如发现任何的辣鸡错误欢迎吐槽! https://blog.csdn.net/HOWARLI/article/details/80343952
文章标签: MIN_25 MIn_25筛
个人分类: Min_25筛
上一篇【数论】Min_25筛
下一篇【JZOJ 5683】【GDSOI2018模拟4.22】Prime
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭