
GPU 服务器厂家:怎样铸就卓越 AI 算力?
数据管理上,热数据像常用的模型参数就放缓存或内存,冷数据像老的训练数据就放 SSD,再搞点数据压缩编码,就像把东西整理得更紧凑,空间利用更合理,这样 GPU 服务器在处理大规模数据时才能跑得稳。模型简化里的剪枝就像给模型 “减肥”,去掉多余的连接和神经元,量化把参数精度变一变,知识蒸馏把大模型的知识传给小模型,都能让模型更 “苗条”,计算起来更快更轻松,就像跑车减重后跑得更快。低功耗设计像 ARM 架构在移动设备里就很牛,在 GPU 服务器里也有它的用武之地,就像跑车的节能模式,电路设计优化得好,功耗低。






























