1.Matlab介绍
MATLAB (MATrix LABoratory) 是由 MathWorks 公司开发的一款高性能的商业数学软件,主要用于数值计算、数据分析、可视化、算法开发以及模型仿真。
其核心是一个强大的交互式环境,允许用户以矩阵和数组作为基本数据单位进行计算,这使其在工程、科学计算(如线性代数、统计分析、信号与图像处理、控制系统设计)和金融建模等领域具有天然优势。MATLAB 提供了丰富的内置数学函数库,支持从简单计算到复杂算法实现的各类任务。
除了核心语言和环境,MATLAB 的一个关键优势在于其庞大的专业工具箱。这些工具箱(由 MathWorks 官方开发和维护)提供了针对特定应用领域的预建函数、应用程序和算法。下图是官网上阐述的Matlab的核心功能。
2.Matlab与Python之间的区别与联系
2.1数学建模与仿真
在数学建模方面,用一句话来总结就是Matlab是一些编号的乐高积木,而Python相当于只是一个零散的积木。由于这种性质上面的不同,所以Python来讲会相当灵活。可以实现很多自定义的功能区域。比如在网页上获取一定的信息的时候,这是Matlab做不到的。
在数学建模与仿真测试上面,Matlab的优势在于存在使用Simulink图形化建模工具,适合多领域物理系统(如控制系统、电路)的动态仿真。不仅如此,Matlab还内置求解器提供常微分方程(ODE)、随机微分方程(SDE)的专用求解器(如ode45
、sde
),并支持符号计算(Symbolic Math Toolbox)。
python的优势在于用户的灵活性能更高。我们不仅可以自定义函数来具体针对每一个问题都可以设计自己的解释工具。但是同时,我们也可以调用下载外部库,通过引用库函数来实现具体功能。例如:scipy.integrate提供ODE求解器(如solve_ivp),sympy支持符号计算。
2.2深度学习
特性 | MATLAB | Python |
框架支持 | Deep Learning Toolbox(支持ONNX导入/导出) | TensorFlow, PyTorch, Keras(主流生态) |
数据预处理 | 内置图像/信号标注App(如Image Labeler) | 依赖OpenCV、Albumentations等库 |
部署能力 | 一键生成CUDA代码(GPU Coder) | ONNX Runtime或LibTorch部署 |
可视化 | 训练进度实时绘图(Training Progress Monitor) | TensorBoard、Weights & Biases |
但是为了更好的解决实际问题,我们不可能孤立的使用这两个软件其中的一种,有时候两种软件结合起来使用会更加方便。
2.3机器学习
MATLAB 优势
全流程集成:Classification Learner App自动调参/验证,适合工程快速部署。
专业工具箱:Statistics and Machine Learning Toolbox提供工业级算法(如高斯过程回归)。
Python 优势
库生态丰富:
scikit-learn:覆盖经典ML算法(>300种)
XGBoost/LightGBM:梯度提升树高效实现
PyCaret:低代码自动化ML。
大数据支持:PySpark整合Hadoop生态,MATLAB需第三方接口
2.4总结
在工程系统建模(Simulink)、快速控制原型设计等物理方面,我们可能更需要Matlab来实行操作,在进行科学画图,数据预处理方面,可能Matlab更胜一筹。
在深度学习前沿模型(PyTorch生态)、超大规模数据(Spark集群)、Web服务集成、数据采集(多模态爬虫)等领域是Python会更胜一筹。原因正在于Python中会存在各种各样的包会为我们解决各种各样的问题。而且我们也可以自己创造这些“积木”,从而更好的完成我们的项目问题。但是可能Python并不是现如今最灵活的语言了,但是我们仍然不能否认他的灵活性。
总而言之,没有一款100%说哪一款软件会更好用,只是说哪一款软件会更加使用哪一个问题。我们也可以混合使用这两款软件来综合提升我们的能力。“Python预处理 + MATLAB核心计算 + Python部署”就是一个不错的方法
两者并非互斥,现代科研/工程中常通过 数据管道 或 引擎调用 协同工作。关键在于利用MATLAB的垂直领域深度和Python的横向生态广度,实现计算效率与灵活性的平衡。