PAT 乙级 1001 害死人不偿命的(3n+1)猜想 (15分)

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

输入样例:

3

输出样例:

5
n = int(input())
count = 0
while n != 1:
    if n % 2 == 0:
        n /= 2
        count += 1
    else :
        n = (3*n+1) / 2
        count += 1
print(count)
#include<stdio.h>
int main(){
    int a;
    scanf("%d", &a);
    int count = 0;
    while (a!= 1){
        if (a % 2 == 0){
            a /= 2;
            count += 1;}
        else {
            a = (3*a+1) / 2;
            count += 1;}
    }
    printf("%d",count);
    return 0;
}

 

发布了1 篇原创文章 · 获赞 0 · 访问量 1
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览