问题:
在一个圆形操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
要求:
对于任意给定的n堆石子,计算合并成一堆的最小得分和最大得分。
算法选择:
动态规划法。动态规划能够通过将问题分解为更小的子问题,并存储其结果,从而避免重复计算,提高效率。
设计思路:
1.用数组stone_min[i][j]表示表示从第i堆到第j堆石子的最小合并得分。stone[i][j]_max表示从第i堆到第j堆石子的最大合并得分。sum[i]表示从第1堆到第i堆石子的总数,便于快速计算任意区间内的石子总数。
2.当i==j时,只有一堆石子,不需要合并,因此stone_min[i][i]=0和stone_max[i][i]=0。
3.对于区间[i,j],考虑所有可能的分割点k(i<=k<j),更新stone_min[i][j]和 stone_max[i][j]的值。最小得分:stone_min[i][j] = min(stone_min[i][j], stone_min[i][k] + stone_min[k+1][j]+sum[i][j])最大得分:stone_max[i][j]=max(stone_max[i][j], stone_max[i][k]+stone_max[k+1][j]+sum[i][j])。
4.从长度为2的区间开始,逐步增加区间长度,直到覆盖所有石子。对于每个区间长度,遍历所有可能的起点和终点,更新stone_min和stone_max数组。最终将最小得分存储在stone_min[1][n],最大得分存储在stone_max[1][n]。
// 动态规划填表
for (int l=2; l<=n; ++l) { // 区间长度从2到n
for (int i =1; i+l-1<=n; ++i) { // 起始位置
int j =i+l-1; // 结束位置
for (int k=i; k<j; ++k) { // 分割点
int cost=sum[j]-sum[i-1]; // 当前区间的和
stone_min[i][j]=min(stone_min[i][j],stone_min[i][k]+stone_min[k+1][j]+cost);
stone_max[i][j]=max(stone_max[i][j],stone_max[i][k]+stone_max[k+1][j]+cost);
}
}
}