矩阵树定理

摘要

 

       在信息学竞赛中,有关生成树的最优化问题如最小生成树等是我们经常遇到的,而对生成树的计数及其相关问题则少有涉及。事实上,生成树的计数是十分有意义的,在许多方面都有着广泛的应用。本文从一道信息学竞赛中出现的例题谈起,首先介绍了一种指数级的动态规划算法,然后介绍了行列式的基本概念、性质,并在此基础上引入Matrix-Tree定理,同时通过与一道数学问题的对比,揭示了该定理所包含的数学思想。最后通过几道例题介绍了生成树的计数在信息学竞赛中的应用,并进行总结。

关键字

 

       生成树的计数 Matrix-Tree定理

问题的提出

 

[例一]高速公路(SPOJ p104 Highways)

 

       一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路。现在,需要有选择的修建一些高速公路,从而组成一个交通网络。你的任务是计算有多少种方案,使得任意两座城市之间恰好只有一条路径?

       数据规模:1≤n≤12。

[分析]

 

       我们可以将问题转化到成图论模型。因为任意两点之间恰好只有一条路径,所以我们知道最后得到的是原图的一颗生成树。因此,我们的问题就变成了,给定一个无向图G,求它生成树的个数t(G)。这应该怎么做呢?

经过分析,我们可以得到一个时间复杂度为O(3n*n2)的动态规划算法,因为原题的规模较小,可以满足要求。但是,当n再大一些就不行了,有没有更优秀的算法呢?答案是肯定的。在介绍算法之前,首先让我们来学习一些基本的预备知识。

新的方法

 

介绍

 

       下面我们介绍一种新的方法——Matrix-Tree定理(Kirchhoff矩阵-树定理)。Matrix-Tree定理是解决生成树计数问题最有力的武器之一。它首先于1847年被Kirchhoff证明。在介绍定理之前,我们首先明确几个概念:

1、G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0;当i=j时,dij等于vi的度数。

2、G的邻接矩阵A[G]也是一个n*n的矩阵, 并且满足:如果vi、vj之间有边直接相连,则aij=1,否则为0。

我们定义G的Kirchhoff矩阵(也称为拉普拉斯算子)C[G]为C[G]=D[G]-A[G],则Matrix-Tree定理可以描述为:G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝对值。所谓n-1阶主子式,就是对于r(1≤r≤n),将C[G]的第r行、第r列同时去掉后得到的新矩阵,用Cr[G]表示。

附程序:

#include<iostream>

      #include<cmath>

using namespace std;

#define zero(x)((x>0? x:-x)<1e-15)

int const MAXN = 100;

double a[MAXN][MAXN];

       doubleb[MAXN][MAXN];

int g[53][53];

       int N, M;

double det(double a[MAXN][MAXN], int n) {

    int i, j,k, sign = 0;

    doubleret = 1, t;

    for (i =0; i < n; i++)

        for(j = 0; j < n; j++)

           b[i][j] = a[i][j];

    for (i =0; i < n; i++) {

        if(zero(b[i][i])) {

           for (j = i + 1; j < n; j++)

               if (!zero(b[j][i]))

                   break;

           if (j == n)

               return 0;

           for (k = i; k < n; k++)

               t = b[i][k], b[i][k] = b[j][k], b[j][k] = t;

           sign++;

        }

        ret*= b[i][i];

        for(k = i + 1; k < n; k++)

           b[i][k] /= b[i][i];

        for(j = i + 1; j < n; j++)

           for (k = i + 1; k < n; k++)

               b[j][k] -= b[j][i] * b[i][k];

    }

    if (sign& 1)

        ret =-ret;

    returnret;

}

int main() {

    int cas;

   scanf("%d", &cas);

    while (cas--) {

        scanf("%d%d", &N,&M);

        for (int i = 0;i < N; i++) {

           for (int j = 0; j < N; j++) {

              

               g[i][j] = 0;

            }

        }

        while(M--) {

           int a, b;

           scanf("%d%d", &a, &b);

           g[a - 1][b - 1] = g[b - 1][a - 1] = 1;

        }

        for(int i = 0; i < N; i++) {

           for (int j = 0; j < N; j++) a[i][j] = 0;

        }

        for(int i = 0; i < N; i++) {

           int d = 0;

           for (int j = 0; j < N; j++) if (g[i][j]) d++;

           a[i][i] = d;

        }

        for(int i = 0; i < N; i++) {

           for (int j = 0; j < N; j++) {

               if (g[i][j]) a[i][j] = -1;

            }

        }

       double ans = det(a, N - 1);

       printf("%0.0lf\n", ans);

    }

    return 0;

}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
矩阵定理是一种基于图的行列式计算算法,可以用来判断两个图是否同构。下面是使用矩阵定理判断两个图是否同构的具体流程: 1. 对于两个图G1和G2,先计算它们的拉普拉斯矩阵L1和L2。 2. 对于拉普拉斯矩阵L1和L2,分别选择一个相同的大小的行列子矩阵,称为L1'和L2'。 3. 计算L1'和L2'的行列式,如果它们相等,则认为G1和G2同构。否则,认为它们不同构。 下面是使用C语言代码实现矩阵定理判断两个图是否同构的示例: ``` #include <stdio.h> #include <stdlib.h> #include <string.h> // 定义矩阵大小 #define MAX_N 100 #define MAX_M 5000 // 定义拉普拉斯矩阵 int L1[MAX_N][MAX_N], L2[MAX_N][MAX_N]; // 定义行列式计算函数 int determinant(int n, int mat[MAX_N][MAX_N]) { int det = 1; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { while (mat[j][i]) { int t = mat[i][i] / mat[j][i]; for (int k = i; k < n; k++) { mat[i][k] = (mat[i][k] - t * mat[j][k]); // 交换i,j两行 int temp; temp = mat[i][k]; mat[i][k] = mat[j][k]; mat[j][k] = temp; } det = -det; } } det *= mat[i][i]; } return det; } int main() { // 读入两个图 int n, m1, m2; scanf("%d%d%d", &n, &m1, &m2); memset(L1, 0, sizeof(L1)); memset(L2, 0, sizeof(L2)); for (int i = 0; i < m1; i++) { int u, v; scanf("%d%d", &u, &v); L1[u - 1][u - 1]++; L1[v - 1][v - 1]++; L1[u - 1][v - 1]--; L1[v - 1][u - 1]--; } for (int i = 0; i < m2; i++) { int u, v; scanf("%d%d", &u, &v); L2[u - 1][u - 1]++; L2[v - 1][v - 1]++; L2[u - 1][v - 1]--; L2[v - 1][u - 1]--; } // 计算行列式 int k = n / 2; int det1 = determinant(k, L1); int det2 = determinant(k, L2); // 判断是否同构 if (det1 == det2) { printf("Same\n"); } else { printf("Different\n"); } return 0; } ``` 在上面的代码中,我们先输入两个图的节点数、边数和边的信息,然后构造它们的拉普拉斯矩阵。接着,我们选择相同大小的行列子矩阵,用行列式计算函数计算它们的行列式,最后比较两个行列式是否相等,从而判断它们是否同构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值