Paper阅读:Dynamic-SLAM

前言

论文原文:Semantic monocular visual localization and mapping based on deep learning in dynamic environment
在动态环境中工作时,由于动态对象的干扰,传统的SLAM框架的性能很差。 通过在对象检测中利用深度学习的优势,提出了一种语义动态的动态地图定位和映射框架Dynamic-SLAM,以解决动态环境中的SLAM问题。

本文的主要三大贡献:

  1. 针对SLAM系统提出了一种基于相邻帧速度不变性的丢失检测补偿算法,提高SSD的recall rate,为后续模块提供了良好的依据。

  2. 提出了一种选择跟踪算法,以一种简单有效的方式消除动态对象,提高了系统的鲁棒性和准确性。

  3. 构建了基于特征的可视化动态SLAM系统。 构建了基于SSD的目标检测模块线程,并将其检测结果作为先验知识提升SLAM性能。

主要希望解决问题:动态环境下的SLAM。
在这里插入图片描述

Missed detection compensation algorithm(漏检补偿算法)

传统目标检测任务无法通过上下文信息来提高检测精度。但SLAM中,视频帧按时间顺序到达时,检测结果将以柔和的方式扫描到先前的帧中,从而预测下一个检测结果,从而避免丢失或丢失。 对于SLAMIDE问题中的动态对象检测任务,Recall rate更加重要。

T P T P + F N \frac {TP}{TP+FN} TP+FN

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值