29. 两数相除 难度[中等]
给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend 除以除数 divisor 得到的商。
整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2
示例 1:
输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:
输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333..) = -2
提示:
- 被除数和除数均为 32 位有符号整数。
- 除数不为 0。
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1]。本题中,如果除
- 结果溢出,则返回 2^31 − 1。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/divide-two-integers
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法一:二段性
cv,学习+1
class Solution {
int INF = Integer.MAX_VALUE;
public int divide(int _a, int _b) {
long a = _a, b = _b;
boolean flag = false;
if ((a < 0 && b > 0) || (a > 0 && b < 0)) flag = true;
if (a < 0) a = -a;
if (b < 0) b = -b;
long l = 0, r = a;
while (l < r) {
long mid = l + r + 1 >> 1;
if (mul(mid, b) <= a) l = mid;
else r = mid - 1;
}
r = flag ? -r : r;
if (r > INF || r < -INF - 1) return INF;
return (int)r;
}
long mul(long a, long k) {
long ans = 0;
while (k > 0) {
if ((k & 1) == 1) ans += a;
k >>= 1;
a += a;
}
return ans;
}
}
此文章创于本人学习时的记录,如有错误或更优解还请指出