Saruman’s Level Up Gym - 101656G CSU 2069

原创 2018年04月17日 09:06:58

题目链接: https://vjudge.net/problem/Gym-101656G // 也可在CSU 2069提交

题意: 给你一个十进制的数 二进制 111,也就是十进制的7表示第一个等级,问你所给的十进制是第几个等级

思路: 拿到题目首先想到的就是组合数,但是比赛的时候把这个过程想的太过复杂。我们假设这个数是n位二进制

1.其实就是考虑每一个1,假设它为最高位,这样的话 剩余的n-1位的范围就是 n-1个0 到 n-1个1,我们只需要用组合数C(3,n-1)

2.最高位肯定是1,下移的时候,我们要标记上次所用的1,保持上界的不变,也就是这个数不会溢出,这时候就用到了cnt变量,记录之前的1,后面的长度 只需要是 Len - i - 1,这个长度的表示应该是常识了。我们所需要排列的1 小于3的时候, 3 - cnt,超过3的时候 3 - cnt%3。依次遍历就好

3.这个想法会漏掉的情况就是,比如11111 会漏掉 11100这个位置,因为 到第三个1的时候 我们假设它为0 来枚举的,并没有考虑它自己为1,(因为它自己为1的话,是3的倍数,我们根据第二步的3 - cnt%3 得到3,不会考虑都为0的情况),且cnt正好等于3的倍数的情况,所以只需要在最后特判一下即可。1000表示为1111101000同理,会少两种情况。

4.涉及到大数的运算和转换为二进制的操作,并且将需要的数字转化为字符串,如果用Java会方便很多

#include <vector>
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstdlib>


using namespace std;
typedef unsigned long long LL;
const int L = 110;


string mul(string a, string b) { //高精度乘法a,b,均为非负整数
    string s;
    int na[L], nb[L], nc[L], La = a.size(), Lb = b.size(); //na存储被乘数,nb存储乘数,nc存储积
    fill(na, na + L, 0);
    fill(nb, nb + L, 0);
    fill(nc, nc + L, 0); //将na,nb,nc都置为0
    for(int i = La - 1; i >= 0; i--) na[La - i] = a[i] - '0'; //将字符串表示的大整形数转成i整形数组表示的大整形数
    for(int i = Lb - 1; i >= 0; i--) nb[Lb - i] = b[i] - '0';
    for(int i = 1; i <= La; i++)
        for(int j = 1; j <= Lb; j++)
            nc[i + j - 1] += na[i] * nb[j]; //a的第i位乘以b的第j位为积的第i+j-1位(先不考虑进位)
    for(int i = 1; i <= La + Lb; i++)
        nc[i + 1] += nc[i] / 10, nc[i] %= 10; //统一处理进位
    if(nc[La + Lb]) s += nc[La + Lb] + '0'; //判断第i+j位上的数字是不是0
    for(int i = La + Lb - 1; i >= 1; i--)
        s += nc[i] + '0'; //将整形数组转成字符串
    return s;
}


string add(string a, string b) { //只限两个非负整数相加
    string ans;
    int na[L] = {0}, nb[L] = {0};
    int la = a.size(), lb = b.size();
    for(int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0';
    for(int i = 0; i < lb; i++) nb[lb - 1 - i] = b[i] - '0';
    int lmax = la > lb ? la : lb;
    for(int i = 0; i < lmax; i++) na[i] += nb[i], na[i + 1] += na[i] / 10, na[i] %= 10;
    if(na[lmax]) lmax++;
    for(int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
    return ans;
}


int sub(int *a, int *b, int La, int Lb) {
    if(La < Lb) return -1; //如果a小于b,则返回-1
    if(La == Lb) {
        for(int i = La - 1; i >= 0; i--)
            if(a[i] > b[i]) break;
            else if(a[i] < b[i]) return -1; //如果a小于b,则返回-1


    }
    for(int i = 0; i < La; i++) { //高精度减法
        a[i] -= b[i];
        if(a[i] < 0) a[i] += 10, a[i + 1]--;
    }
    for(int i = La - 1; i >= 0; i--)
        if(a[i]) return i + 1; //返回差的位数
    return 0;//返回差的位数


}


string div(string n1, string n2, int nn) { //n1,n2是字符串表示的被除数,除数,nn是选择返回商还是余数
    string s, v; //s存商,v存余数
    int a[L], b[L], r[L], La = n1.size(), Lb = n2.size(), i, tp = La; //a,b是整形数组表示被除数,除数,tp保存被除数的长度
    fill(a, a + L, 0);
    fill(b, b + L, 0);
    fill(r, r + L, 0); //数组元素都置为0
    for(i = La - 1; i >= 0; i--) a[La - 1 - i] = n1[i] - '0';
    for(i = Lb - 1; i >= 0; i--) b[Lb - 1 - i] = n2[i] - '0';
    if(La < Lb || (La == Lb && n1 < n2)) {
        //cout<<0<<endl;
        return n1;
    }//如果a<b,则商为0,余数为被除数
    int t = La - Lb; //除被数和除数的位数之差
    for(int i = La - 1; i >= 0; i--) //将除数扩大10^t倍
        if(i >= t) b[i] = b[i - t];
        else b[i] = 0;
    Lb = La;
    for(int j = 0; j <= t; j++) {
        int temp;
        while((temp = sub(a, b + j, La, Lb - j)) >= 0) { //如果被除数比除数大继续减
            La = temp;
            r[t - j]++;
        }
    }
    for(i = 0; i < L - 10; i++) r[i + 1] += r[i] / 10, r[i] %= 10; //统一处理进位
    while(!r[i]) i--;//将整形数组表示的商转化成字符串表示的
    while(i >= 0) s += r[i--] + '0';
    //cout<<s<<endl;
    i = tp;
    while(!a[i]) i--;//将整形数组表示的余数转化成字符串表示的</span>
    while(i >= 0) v += a[i--] + '0';
    if(v.empty()) v = "0";
    //cout<<v<<endl;
    if(nn == 1) return s;
    if(nn == 2) return v;
}


string num, sum;
LL cnt, n;


//将所给10进制转化为2进制
void trans(LL n) {
    while(n) {
        num.push_back(n % 2 + '0');
        n /= 2;
    }
    reverse(num.begin(), num.end());
} 


//将一些数据转为字符串进行大数运算
string trans1(LL n) {
    string a;
    while(n) {
        a.push_back(n % 10 + '0');
        n /= 10;
    }
    reverse(a.begin(), a.end());
    return a;
}


int main() {
//    freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    while(cin >> n) {
        sum = "0", num.clear();
        cnt = 0;
        trans(n);
        int len = num.length();
//        cout<<num<<endl;
        int a = 0;
        for(int i = 0; i < len; i++) {
            if(num[i] == '1') {
                LL l = len - i - 1,c = 0;
                c = 3 - cnt % 3;
//                cout<<c<<" "<<l<<endl;
                while(c  <= l) {
                    string s1 = "1", s2 = "1", s = "1";
                    for(LL i = l; i >= l - c + 1; i--) {
                        s1 = mul(s1, trans1(i));
                    }
                    for(LL i = c; i >= 1; i--) {
                        s2 = mul(s2, trans1(i));
                    }
                    s = div(s1, s2, 1);
                    sum = add(sum, s);
                    c += 3;
                }
                cnt++;
                if(cnt % 3 == 0) sum = add(sum,"1");
            }
        }
            cout << "Day " << n << ": Level = " << sum << endl;
    }
    return 0;
}

【直通华为HCNA/HCNP系列S篇1】Sx7系列交换机主要特性及选型

本课程主要介绍华为最新一代Sx700系列交换机组成,各产品系列的特性、命名规则、主要机型、产品结构,以及各自主要应用等方面。这也是华为HCNA认证考试中的一个部分。
  • 2015年03月17日 22:05

CSU 2069 Saruman’s Level Up(组合数+枚举)

CSU 2069 Saruman’s Level Up 题意 ​ 求0-n之间,二进制中1的个数为3的倍数的数有多少个。 解题思路   首先我们知道,剩余位数=length-1-当...
  • qq_36258516
  • qq_36258516
  • 2018-04-17 07:59:04
  • 91

CSU2069: Saruman’s Level Up

DescriptionSaruman’s army of orcs and other dark minions continuously mine and harvest lumber out of...
  • qq_37064135
  • qq_37064135
  • 2018-04-15 21:04:10
  • 83

2069: Saruman’s Level Up(思维枚举+质数分解求组合数)

题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2069 题目: Description Saruman’s army of or...
  • qq_36300700
  • qq_36300700
  • 2018-04-16 20:34:54
  • 118

Poj 3069 Saruman's Army【贪心】

Saruman's Army Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5742   Accepted: 2...
  • liuke19950717
  • liuke19950717
  • 2015-10-01 22:57:45
  • 1047

CSU 2069 Saruman‘s Level Up(数位dp/组合计数)

大致题意:让你求在1到n范围内转换成二进制后1的个数是3的倍数的数字的个数。 典型的数位dp。设置dp[len][x]表示长度为len的二进制数字中含有x个1的个数。显然又转移方程dp[...
  • u013534123
  • u013534123
  • 2018-04-17 21:51:29
  • 5

线段树,树状数组

HDU5195 http://acm.hdu.edu.cn/showproblem.php?pid=5195经鉴定水题,现场没做出来,唉 HDU5196 http://acm.hdu.edu.cn/...
  • wen_xp
  • wen_xp
  • 2015-03-28 23:58:11
  • 240

2069: Saruman’s Level Up(排列组合+分段打表)

传送门:点击打开链接 题意:就是你在建一个塔,开始它是0层,当某一天的天数,转化为2进制,每一位为1的个数是3的倍数,就可以把塔升级一层,比如第7天,它的二进制为111,3个1,塔就可以升级一层,比...
  • tianwei0822
  • tianwei0822
  • 2018-04-19 17:05:35
  • 11

POJ3069 Saruman's Army

Saruman's Army Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4214   ...
  • u012846486
  • u012846486
  • 2014-10-30 11:31:32
  • 840

POJ 3069 Saruman's Army(贪心)

Saruman's Army Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5954 ...
  • zwj1452267376
  • zwj1452267376
  • 2015-11-17 18:31:48
  • 582
收藏助手
不良信息举报
您举报文章:Saruman’s Level Up Gym - 101656G CSU 2069
举报原因:
原因补充:

(最多只允许输入30个字)