题目描述
有一个 a×b 的整数组成的矩阵,现请你从中找出一个 n×n 的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
输入
第一行为三个整数,分别表示 a,b,n 的值; 第二行至第 a+1 行每行为 b 个非负整数,表示矩阵中相应位置上的数。
输出
输出仅一个整数,为 a×b 矩阵中所有「n×n 正方形区域中的最大整数和最小 整数的差值」的最小值。
样例输入
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
样例输出
1
提示
【数据范围与提示】
对于 20% 的数据 2 ≤ a,b ≤ 100,n ≤ 10;
对于 100% 的数据 2 ≤ a,b ≤ 1000,n ≤ a,n ≤ b,n ≤100,矩阵中的所有数都不超过
1
0
9
10^9
109 。
题解
这道题我们可以用单调队列先算出横向每个数左边n个数中的最大和最小值,再对纵向同一列维护单调队列,操作和横向类似。这样我们就可以求出矩阵的最大和最小值,再找出最大和最小值的最小差值就可以了。
代码
#include<iostream>
#include<cstdio>
#define maxn 1010
using namespace std;
template<typename T> void read(T &x){
x=0;
char c=getchar();
T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
int a,b,n;
int h,t,q[maxn];
int c[maxn][maxn];
int xy[maxn][maxn][10];
int main(){
scanf("%d%d%d",&a,&b,&n);
for(int i=1;i<=a;i++)
for(int j=1;j<=b;j++)
scanf("%d",&c[i][j]);
for(int i=1;i<=a;i++){
h=1;t=0;
for(int j=1;j<=b;j++){
while(h<=t&&j-q[h]+1>n)
h++;
while(h<=t&&c[i][j]>c[i][q[t]])
t--;
q[++t]=j;
xy[i][j][0]=c[i][q[h]];
}
h=1,t=0;
for(int j=1;j<=b;j++){
while(q[h]<j-n+1&&h<=t)
h++;
while(c[i][j]<c[i][q[t]]&&h<=t)
t--;
q[++t]=j;
xy[i][j][3]=c[i][q[h]];
}
}
for(int j=n;j<=b;j++){
h=1;t=0;
for(int i=1;i<=a;i++){
while(h<=t&&i-q[h]+1>n)
h++;
while(h<=t&&xy[i][j][0]>xy[q[t]][j][0])
t--;
q[++t]=i;
xy[i][j][1]=xy[q[h]][j][0];
}
h=1;t=0;
for(int i=1;i<=a;i++){
while(h<=t&&i-q[h]+1>n)
h++;
while(h<=t&&xy[i][j][3]<xy[q[t]][j][3])
t--;
q[++t]=i;
xy[i][j][4]=xy[q[h]][j][3];
}
}
int ans=2147483647;
for(int i=n;i<=a;i++)
for(int j=n;j<=b;j++)
ans=min(ans,xy[i][j][1]-xy[i][j][4]);
printf("%d\n",ans);
return 0;
}
给定一个a×b的矩阵,任务是找到一个n×n的正方形区域,使区域内最大值和最小值之差最小。输入包含矩阵的尺寸和数值,输出这个差值的最小值。可以通过使用单调队列来解决此问题,先计算横轴每个位置左边n个数的最大值和最小值,然后对纵轴进行相同操作。最后找出最大值和最小值的最小差值。
2303

被折叠的 条评论
为什么被折叠?



