最小生成树

题目描述:
最小生成树问题是实际生产生活中十分重要的一类问题。假设需要在n个城市之间建立通信联络网,则连通n个城市只需要n-1条线路。这时,自然需要考虑这样一个问题,即如何在最节省经费的前提下建立这个通信网。
可以用连通网来表示n个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋于边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。现在,需要选择一棵生成树,使总的耗费最小。这个问题就是构造连通网的最小代价生成树,简称最小生成树。一棵生成树的代价就是树上各边的代价之和。
而在常用的最小生成树构造算法中,普里姆(Prim)算法是一种非常常用的算法。以下是其算法的大致结构:
在本题中,读入一个无向图的邻接矩阵(即数组表示),建立无向图并按照以上描述中的算法建立最小生成树,并输出最小生成树的代价。
输入:
输入的第一行包含一个正整数n,表示图中共有n个顶点。其中n不超过50。
以后的n行中每行有n个用空格隔开的整数,对于第i行的第j个整数,如果不为0,则表示第i个顶点和第j个顶点有直接连接且代价为相应的值,0表示没有直接连接。当i和j相等的时候,保证对应的整数为0。
输入保证邻接矩阵为对称矩阵,即输入的图一定是无向图,且保证图中只有一个连通分量。
输出:
只有一个整数,即最小生成树的总代价。请注意行尾输出换行。
样例输入:
4
0 2 4 0
2 0 3 5
4 3 0 1
0 5 1 0
样例输出:

6

程序代码:

#include<stdio.h>
#include<string.h>
int a[60][60],book[60],dis[60];
int main()
{
	int n,i,j,k,count,sum,min,flag;
	while(scanf("%d",&n)!=EOF)
	{
		sum=0;
		count=0;
		flag=0;
		memset(book,0,sizeof(book));
		for(i=0;i<n;i++)
			for(j=0;j<n;j++)
			{
				scanf("%d",&a[i][j]);
				if(i!=j&&a[i][j]==0)
					a[i][j]=99999999;
			}
		for(i=0;i<n;i++)
			dis[i]=a[0][i];
		book[0]=1;
		count++;
		while(count<n)
		{
			min=99999999;
			for(i=0;i<n;i++)
			{
				if(book[i]==0&&dis[i]<min)
				{
					min=dis[i];
					flag=i;
				}
			}
			book[flag]=1;
			count++;
			sum+=dis[flag];
			for(k=0;k<n;k++)
				if(book[k]==0&&dis[k]>a[flag][k])
					dis[k]=a[flag][k];
		}
		printf("%d\n",sum);
	}
	return 0;
}

阅读更多

没有更多推荐了,返回首页