Abner

博观而约取,厚积而薄发,不可择焉不精,语焉不详!

隐马尔科夫模型前向后向算法

本文是自己学习隐马尔科夫模型的一个总结,为了自己以后方便查阅,也算作是李航老师的《统计学习方法》的一个总结,若有疑问,欢迎讨论。推荐阅读知乎上Yang Eninala写的《如何用简单易懂的例子解释隐马尔可夫模型?》,写的非常好。我会联系两者,来作为自己的一篇学习笔记。隐马尔可夫模型: 隐马尔可夫模...

2017-09-13 12:09:56

阅读数:361

评论数:0

一文总结条件熵、交叉熵、相对熵、互信息

条件熵:H(Y|X)表示在已知随机变量X的条件下,随机变量Y的不确定性,H(Y|X)定义为:举个例子:有一堆西瓜,已知这堆西瓜的色泽,以及每种色泽对应好瓜和坏瓜的个数,如下所示,设X表示色泽,Y表示好瓜或者坏瓜。则:这个例子就是计算条件熵的一个过程,现在证明条件熵公式:有很多书上的条件熵是这么定义...

2017-09-07 22:13:40

阅读数:1120

评论数:0

彻底理解样本方差为何除以n-1

设样本均值为,样本方差为,总体均值为,总体方差为,那么样本方差有如下公式:    很多人可能都会有疑问,为什么要除以n-1,而不是n,但是翻阅资料,发现很多都是交代到,如果除以n,对样本方差的估计不是无偏估计,比总体方差要小,要想是无偏估计就要调小分母,所以除以n-1,那么问题来了,为什么不是除以...

2017-09-06 00:10:35

阅读数:14615

评论数:2

如何理解用信息熵来表示最短的平均编码长度

之前弄明白了信息熵是什么,由于信息熵来源于信息论,要怎么才能跟编码联系起来呢?这个问题当时没有想明白,今天查了一下资料,理解了一下,做笔记整理一下,如有错误欢迎指正。如果信息熵不明白的请看这里:http://blog.csdn.net/hearthougan/article/details/761...

2017-09-01 23:27:31

阅读数:334

评论数:1

白话信息熵

距离有近有远,时间有长有短,温度有高有低,我们知道可以用米或者千米来度量距离,用时分秒可以来度量时间的长短,用摄氏度或者华氏度来度量温度的高低,那么我们常说这个信息多,那个信息少,那么信息的多少用什么度量呢?熵! 信息量是了解一个未知事物需要查询的

2017-08-04 03:19:58

阅读数:396

评论数:0

朴素贝叶斯分类器

分类器就是根据某一事物一系列特征来判断该事物的类别,。其实原理很简单,并不需要什么复杂的训练结构,复杂只是计算量,这个交给计算机即可,所以懂了原理,朴素贝叶斯分类器也就掌握了。先不写理论,以例子开始,希望能说的浅显易懂。 一、西瓜的好坏 这里是要借鉴周志华老师书中西瓜的例子,这个例子也是我所看到的...

2017-07-27 15:26:12

阅读数:546

评论数:0

浅谈全概率公式和贝叶斯公式

一、条件概率公式 条件概率由文氏图出发,比较容易理解: 表示B发生后A发生的概率,由上图可以看出B发生后,A再发生的概率就是,因此: 由: 得: 这就是条件概率公式。 假如事件A与B相互独立,那么: 注: 相互独立,两个事件表示成文氏图,也可以画成上图形式,相互独立:表示两个...

2017-07-15 16:25:56

阅读数:1939

评论数:3

卷积神经网络反向传播理论推导

本文首先简单介绍CNN的结构,并不作详细介绍,若需要了解推荐看CS231n课程笔记翻译:卷积神经网络笔记。本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导...

2017-06-08 10:44:25

阅读数:7525

评论数:16

人工神经网络

一、神经网络的模型: 图1 两层全连接神经网络模型     这个是一个带有两个全连接层的神经网络,神经网络,一般不把输入层算在层数之中。 1、神经元: 图2 神经元的数学模型     从单个神经元来看,每个神经元可以看做是一个感知机,可以用来做决策,从图中可以看出,根据输入的线性组合,经过...

2017-05-24 23:45:16

阅读数:2933

评论数:0

线性分类器-KNN、多类SVM、Softmax

本文只是记录一下实现的代码,具体的思想还请看cs231n的课程笔记,其讲解的非常好,智能单元翻译的也很不错。 一、CIFAR-10数据集: 图1 CIFAR-10示例 二、KNN 图2 KNN分类器示例   如图所示,K的取值不同得出来的分类结果也可能是不同的,因此需要对k进行寻参,找出在...

2017-05-11 16:22:52

阅读数:654

评论数:0

支持向量机(SVM)(四)----SMO

我们前几节说了线性可分,以及在低维线性不可分,但是在高维是线性可分的。还有一种情况,如下图:     这种因奇异点而造成的划分平面不合理的移动,不是我们所想的,或者因为个别奇异点导致线性不可分,其余的大部分的点都是线性可分的,如果因此 就映射到高维来解决,那么也不值当,如下的情况:    ...

2017-03-07 01:07:02

阅读数:567

评论数:0

支持向量机(SVM)(三)----核函数及正则化

上一节最后我们说到我们根据求得的,可求得,,然后求出决策函数,但是我们知道: 是的函数,我们也许不必把带入上式来求解,我们直接把上式带入决策函数可有:     假如我们已经求得最优的,在作出预测的时候,我们可以只进行输入数据x与训练样本的内积即可。在转化为对偶条件的时候,我们知道要满...

2017-03-07 01:06:16

阅读数:1635

评论数:0

支持向量机(SVM)(二)----对偶

==============================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     上小节,我们...

2017-03-07 01:04:28

阅读数:382

评论数:0

KNN算法及其实现

K-邻近算法(k-NearestNeighbor,KNN),存在某一样本集,已经知道样本和对应的类别,当输入一个没有类别标识的数据时,找出与其“最相似”的K个样本,在这k个样本中,哪个类别的样本个数最多,我们就把该未知数据的类别归为此类。其中的相似性,可以利用距离来度量,而衡量距离的方法,可以是欧...

2017-03-04 22:55:20

阅读数:796

评论数:0

主成分分析(PCA)

当我们研究某个问题的时候,该问题有很多个变量,而且某些变量与变量之间存在一定的相关关系,如果两个变量存在相关关系,那么这两个变量之间存在着重叠信息,而这就造成了数据的冗余。比如一群学生,Boy和Girl,他们的性别我们可以用二维数组来表示,对于某个学生,Boy 可表示成:[1][0],Girl可表...

2017-03-03 22:55:52

阅读数:310

评论数:0

反向传播算法(BackPropagation,BP)

本文参考《神经网络和深度学习》,旨在说明BP算法是怎样的一个过程。在一个多层的神经网络中,反向传播算法就是不断的学习这个网络的权值和偏值,采用梯度下降法使得该神经网络的输出值与真实的目标值之间的误差最小。   1,那么为什么更新权值和偏值可以使得代价函数最小化呢?   2,以及如何更新权值和偏值呢...

2017-02-20 11:45:00

阅读数:1566

评论数:0

Logistic Regression-逻辑回归

logistic回归分类的主要思想:根据现有的数据对分类边界线建立回归公式,以此分类,这里“回归”源于最佳拟合,表示要找到最佳拟合参数集。训练分类器时就是寻找最佳拟合参数。   Sigmoid函数:   Sigmoid函数的输入记为z,且,向量W就是我们要寻找的参数,向量X是分类器的输入数据。 ...

2016-11-06 21:10:55

阅读数:767

评论数:3

最大似然估计

首先看两个例子:   例1:天上有乌云,问那么下雨的概率是多少?这是一个条件概率,也称为后验概率;如果现在正在下雨,那么天上有乌云的概率是多少?这就是似然,由结果去找原因。   例2:有两个人去打一只正在吃草的鹿,一个是猎手,另一个是菜鸟,砰一声,鹿死了,那么谁最有可能打死这只鹿?这就是最大似...

2016-11-06 12:10:18

阅读数:639

评论数:0

ID3decision tree-ID3决策树实现

创建简单的数据集: 根据下图创建数据集:   图表的意思是:表中5个海洋动物,特征包括两个:1、不浮出水面是否可以生存,2、是否有脚蹼。我们可以将这些动物分成两类: 鱼类和非鱼类。 #create data set and lebels def CreateDataset(): da...

2016-11-03 14:12:14

阅读数:802

评论数:0

K-Means聚类算法原理及实现

由于个人理解有限,难免有错误之处,欢迎指正。 k-means 聚类算法原理:     1、从包含多个数据点的数据集 D 中随机取 k 个点,作为 k 个簇的各自的中心。     2、分别计算剩下的点到 k 个簇中心的相异度,将这些元素分别划归到相异度最低的簇。两个点之间的相异度大小采用欧氏距离公式...

2016-10-26 11:54:49

阅读数:4181

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭